摘要:
A magnetoresisive sensor having a thin seed layer that provides an exceptionally smooth interface between layers of the sensor stack. The exceptionally smooth interface provided by the seed layer reduces interlayer exchange coupling allowing the non-magnetic spacer layer (or barrier layer) to be very thin. The seed layer includes a thin layer of Ru and a thin layer of Si which intermix to form a homogeneous, amorphous thin seed layer of Ru-silicide.
摘要:
A magnetoresisive sensor having a thin seed layer that provides an exceptionally smooth interface between layers of the sensor stack. The exceptionally smooth interface provided by the seed layer reduces interlayer exchange coupling allowing the non-magnetic spacer layer (or barrier layer) to be very thin. The seed layer includes a thin layer of Ru and a thin layer of Si which intermix to form a homogeneous, amorphous thin seed layer of Ru-silicide.
摘要:
In one illustrative example, a spin valve (SV) sensor of the self-pinned type includes a free layer; an antiparallel (AP) self-pinned layer structure; and a non-magnetic electrically conductive spacer layer in between the free layer and the AP self-pinned layer structure. The AP self-pinned layer structure includes a first AP pinned layer having a first thickness; a second AP pinned layer having a second thickness; and an antiparallel coupling (APC) layer formed between the first and the second AP pinned layers. The first thickness is slightly greater than the second thickness. Configured as such, the AP pinned layer structure provides for a net magnetic moment that is in the same direction as a magnetic field produced by the sense current flow, which reduces the likelihood of amplitude flip in the SV sensor.
摘要:
In one illustrative example, a spin valve (SV) sensor of the self-pinned type includes a free layer; an antiparallel (AP) self-pinned layer structure; and a non-magnetic electrically conductive spacer layer in between the free layer and the AP self-pinned layer structure. The AP self-pinned layer structure includes a first AP pinned layer having a first thickness; a second AP pinned layer having a second thickness; and an antiparallel coupling (APC) layer formed between the first and the second AP pinned layers. The first thickness is slightly greater than the second thickness. Configured as such, the AP pinned layer structure provides for a net magnetic moment that is in the same direction as a magnetic field produced by the sense current flow, which reduces the likelihood of amplitude flip in the SV sensor.
摘要:
A magnetic structure for use in a perpendicular magnetic write head that prevents magnetic domain formation and reduces magnetic remanence in the structure. The magnetic structure includes magnetic layers sandwiched between thin non-magnetic layers. Each of the magnetic layers includes a relatively thicker layer of CoFe sandwiched between relatively thinner layers of NiFe.
摘要:
A spin valve sensor includes a spacer layer which is located between a free layer and an antiparallel (AP) pinned layer structure wherein the AP pinned layer structure includes an antiparallel coupling layer which is located between and interfaces first and second AP pinned layers with the second AP pinned layer interfacing the spacer layer. Each of the first and second AP pinned layers is composed of cobalt iron (CoFe) wherein the iron (Fe) content in the cobalt iron (CoFe) of one of the first and second AP pinned layers is greater than the iron (Fe) content in the cobalt iron (CoFe) in the other one of the first and second AP pinned layers.
摘要:
A method for fabricating a sensor having anti-parallel tab regions. The method includes forming a free layer, and forming a first layer of a carbon composition above the active area of the free layer. A layer of resist is formed above the first layer of carbon composition. A bias layer is formed above the tab areas of the free layer, the bias layer being operative to substantially pin magnetic moments of the tab areas of the free layer. Leads are formed above the bias layer. A second layer of carbon composition is formed above the tab areas of the free layer. Any material above a plane extending parallel to portions of the second layer of carbon composition above the tab areas are removed using chemical-mechanical polishing. Any remaining carbon composition is removed.
摘要:
A method for fabricating a sensor having anti-parallel tab regions. The method includes forming a free layer having tab areas on opposite sides of an active area, forming a first layer of a carbon composition above the active area of the free layer, the first layer of carbon being substantially absent from tab areas of the free area, forming spacer layers above the tab areas of the free layer, the spacer layers being operable to make magnetic moments of ferromagnetic layers on opposite sides thereof antiparallel, forming bias layers above the spacer layers, the bias layers being operative to substantially pin magnetic moments of the tab areas of the free layer, forming second layers of carbon composition above the tab areas of the free layer, and removing the layers of carbon composition and any portions of the layers overlying the layers of carbon composition.
摘要:
A dual spin valve giant magnetoresistance (GMR) sensor having two spin valves with the second spin valve being self-biased is disclosed herein. According to the present invention a dual spin valve system is disclosed wherein the first of the two spin valves in the dual spin valve element is pinned through exchange coupling, i.e., a first anti-ferromagnetic pinning layer and a first ferromagnetic pinned layer structure are exchange coupled for pinning the first magnetic moment of the first ferromagnetic pinned layer structure in a first direction. The second of the two spin valves in the dual spin valve system is self-pinned. The self-pinned spin valve does not use any anti-ferromagnetic layers to pin the magnetization of the pinned layers.