Abstract:
A magnetoresisive sensor having a thin seed layer that provides an exceptionally smooth interface between layers of the sensor stack. The exceptionally smooth interface provided by the seed layer reduces interlayer exchange coupling allowing the non-magnetic spacer layer (or barrier layer) to be very thin. The seed layer includes a thin layer of Ru and a thin layer of Si which intermix to form a homogeneous, amorphous thin seed layer of Ru-silicide.
Abstract:
A current perpendicular to plane (CPP) magnetoresistive sensor having a current path defined by first and second overlying insulation layers between which an electrically conductive lead makes content with a surface of the sensor stack. The current path being narrower than the width of the sensor stack allows the outer edges of the sensor stack to be moved outside of the active area of the sensor. This results in a sensor that is unaffected by damage at outer edges of the sensor layers. The sensor stack includes a free layer that is biased by direct exchange coupling with a layer of antiferromagnetic material (AFM layer). The strength of the exchange field can be controlled by adding Cr to the AFM material to ensure that the exchange field is sufficiently weak to avoid pinning the free layer.
Abstract:
A magnetoresistive sensor having a shape enhanced pinning and a flux guide structure. First and second hard bias layers and lead layers extend from the sides of a sensor stack. The hard bias layers and leads have a stripe height that is smaller than the stripe height of a free layer, resulting in a free layer that extends beyond the back edge of the lead and hard bias layer. This portion of the free layer that extends beyond the back edge of the leads and hard bias layers provides a back flux guide. Similarly, the sensor may have a free layer that extends beyond the front edge of the lead and hard bias layers to provide a front flux guide. The pinned layer extends significantly beyond the back edge of the free layer, providing the pinned layer with a strong shape enhanced magnetic anisotropy.
Abstract:
A magnetoresistive sensor having a hard bias structure that provides improved bias field robustness. The sensor includes a nitrogenated hard bias layer and a seed layer that include a nitrogenated NiTa layer and a layer of Ru. The seed layer can also include a layer of CrMn disposed between the layer of NiTa and the layer of Ru. The novel seed structure allows a nitrogenated hard bias layer to be used, while maintaining a high magnetic coercivity of the hard bias layer.
Abstract:
A magnetic structure for use in a perpendicular magnetic write head that prevents magnetic domain formation and reduces magnetic remanence in the structure. The magnetic structure includes magnetic layers sandwiched between thin non-magnetic layers. Each of the magnetic layers includes a relatively thicker layer of CoFe sandwiched between relatively thinner layers of NiFe.
Abstract:
A magnetoresistive sensor having a shape enhanced pinning and a flux guide structure. The sensor includes a sensor stack with a pinned layer, spacer layer and pinned layer. First and second hard bias layers and lead layers extend from the sides of the sensor stack. The hard bias layers and leads have a stripe height that is smaller than the stripe height of the free layer, resulting in a free layer that extends beyond the back edge of the lead and hard bias layer. This portion of the free layer that extends beyond the back edge of the leads and hard bias layers provides a back flux guide. Similarly, the sensor may have a free layer that extends beyond the front edge of the lead and hard bias layers to provide a front flux guide. The pinned layer extends significantly beyond the back edge of the free layer, providing the pinned layer with a strong shape enhanced magnetic anisotropy. The sensor may have a lead over layer structure, with the sensor layers extending significantly beyond the inner ends of the leads, thereby moving the outer edges of the sensor layers outside of the track width of the sensor. This eliminates the effect of magnetic damage at the outer edges of the free layer.
Abstract:
A magnetoresistive sensor having a pinned layer that extends beyond the free layer in the stripe height direction for improved shape enhanced pinning. The sensor includes hard bias layers and leads that extend in the stripe height direction beyond the stripe height of the free layer, providing increased conductive material for improved conduction of sense current to the sensor. The hard bias layers contact the sensor stack in the region between the ABS and the stripe height of the free layer, but are electrically insulated from the pinned layer in regions beyond the stripe height of the free layer by a layer of conformally deposited non-magnetic, electrically insulating material such as alumina.
Abstract:
A magnetic head assembly has a read head that includes a sensor wherein the sensor includes a self-pinned antiparallel (AP) pinned layer structure, a ferromagnetic free layer structure that has a magnetic moment that is free to rotate in response to signal fields and a spacer layer which is located between the free layer and AP pinned layer structures. The self-pinned AP pinned layer structure includes first and second antiparallel (AP) pinned layers, an antiparallel coupling (APC) layer located between and interfacing the first and second AP pinned layers wherein the second AP pinned layer is located between the first AP pinned layer and the spacer layer. The first AP pinned layer is composed of cobalt platinum chromium (CoPtCr).
Abstract:
In one illustrative embodiment of the invention, a spin valve sensor of a magnetic head has a free layer structure; an antiparallel (AP) self-pinned layer structure; and a non-magnetic electrically conductive spacer layer in between the free layer structure and the AP self-pinned layer structure. The AP self-pinned layer structure includes a first AP pinned layer; a second AP pinned layer; an antiparallel coupling (APC) layer formed between the first and the second AP pinned layers. At least one of the first and the second AP pinned layers is made of cobalt having no iron content. The other AP pinned layer may be formed of cobalt, cobalt-iron, or other suitable material. The use of cobalt in the AP self-pinned layer structure increases its magnetostriction to increase the self-pinning effect. Preferably, the first AP pinned layer is cobalt-iron and the second AP pinned layer is cobalt which provides for both an increase in magnetostriction and magnetoresistive coefficient Δr/R of the sensor.
Abstract:
A spin valve sensor includes a spacer layer which is located between a free layer and an antiparallel (AP) pinned layer structure wherein the AP pinned layer structure includes an antiparallel coupling layer which is located between and interfaces first and second AP pinned layers with the second AP pinned layer interfacing the spacer layer. Each of the first and second AP pinned layers is composed of cobalt iron (CoFe) wherein the iron (Fe) content in the cobalt iron (CoFe) of one of the first and second AP pinned layers is greater than the iron (Fe) content in the cobalt iron (CoFe) in the other one of the first and second AP pinned layers.