摘要:
An electrically re-programmable fuse (eFUSE) device for use in integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element, corresponding to a longitudinal axis thereof, leaving opposing ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with opposing ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes.
摘要:
An electrically re-programmable fuse (eFUSE) device for use in integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element, corresponding to a longitudinal axis thereof, leaving opposing ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with opposing ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes.
摘要:
An electrically re-programmable fuse (eFUSE) device for use in integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element, corresponding to a longitudinal axis thereof, leaving opposing ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with opposing ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes.
摘要:
An electrically re-programmable fuse (eFUSE) device for use in integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element, corresponding to a longitudinal axis thereof, leaving opposing ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with opposing ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
摘要:
A method to fabricate interconnect structures that are part of integrated circuits and microelectronic devices by utilization of an irradiation to remove and clean a sacrificial material used therein is described. The advantages of utilizing the irradiation to remove the sacrificial material include reduced damage to interlayer dielectric layers that result in enhanced device performance and/or increased reliability.