摘要:
A voltage reference circuit (10) produces a reference voltage at output terminals (66, 76). The output reference voltage is substantially independent of variations in the supply voltage, integrated circuit manufacturing processes and temperature. A current reference circuit (30, 32, 34, 36, 38, 56 and 84) produces constant emitter currents in bipolar transistors (40, 70). The V.sub.BE of the bipolar transistors (40, 70) is a stable reference due to the constant emitter current. The bipolar transistors (40, 70) are manufactured with similar geometries to eliminate dependence of the reference voltage upon bipolar processing variations. The V.sub.BE of the bipolar transistor (40) produces a reference current which is provided to the base terminal of bipolar transistor (70). The V.sub.BE of bipolar transistor (70) is further utilized to produce the output reference voltage. A temperature stabilization circuit (58, 82, 86, 90, 92 and 94) is provided with an opposite temperature coefficient from that of the bipolar transistors (40, 70). The temperature stabilization circuit is connected to counteract the influence of the temperature coefficient of the bipolar transistors on the output reference voltage. There is thus established an output reference voltage which is substantially independent of supply voltage, processing and temperature.
摘要:
A pressure sensing system provides signals representative of a magnitude of pressure at a selected site. A sensor module includes a first transducer producing a first signal having an associated first response to pressure and strain applied to the sensor module and a second transducer producing a second signal having an associated second response to pressure and strain applied to the sensor module. A calculated pressure, a bending pressure error and a bend-compensated pressure are computed in response to the first signal and the second signal.
摘要:
Aspects of the present disclosure include a medical device system including an implantable medical device and an external device with three or more electrodes configured to contact a patient's skin. The external device either transmits or receives a test signal to or from the implantable medical device using a plurality of possible receive dipoles, where each possible receive dipole is formed by a pair of electrodes. A signal quality monitor, either at the implantable medical device or at the external device, measures a signal quality for the possible receive dipoles.
摘要:
In general, this disclosure describes techniques for reducing power consumption within an implantable medical device (IMD). An IMD implanted within a patient may have finite power resources that are intended to last several years. To promote device longevity, sensing and therapy circuits of the IMD are designed to incorporate an analog-to-digital converter (ADC) that provides relatively high resolution output at a relatively low operation frequency, and does so with relatively low power consumption. An ADC designed in accordance with the techniques described herein utilizes a quantizer that has a lower resolution than a digital-to-analog converter (DAC) used for negative feedback. Such a configuration provides the benefits of higher resolution DAC feedback without having the use high oversampling ratios that result in high power consumption. Also, the techniques avoid the use of, and the associated high power consumption of, a high resolution flash ADC, within the sigma delta loop.
摘要:
A compensation circuit (10) controls the gain of transmit and receive amplifiers (47), (49) as a function of a residual input current (I.sub.res). Circuit (10) includes a constant current source (24) which is connected to produce mirrored constant currents in transistors (26) and (28). The residual current is passed through a resistor (R.sub.loop) to produce a reference voltage. The constant current from the transistor (26) is divided with the first part of the current passing through the resistor (R.sub.loop) and the second part of the current passing through a resistor (50) and a transistor (54). The transistor (54) is connected in a mirror configuration with a transistor (58). When the residual current increases, the current mirrored to transistor (58) decreases. A transistor (32) is connected in parallel with the transistor (58) to receive the remaining current from the transistor (28) which is not drawn by the transistor (58). The transistor (32) serves as the master side of a mirror circuit having slave transistors (38) and (42). The current mirrored to the transistors (38), (42) is drawn from the amplifiers (47), (49) wherein the current through the amplifiers is proportional to the gain thereof. Thus, the gain of the amplifiers is inversely proportional to the residual current thereby compensating the amplifier gain for the length of the telephone line.
摘要:
This disclosure is directed to the synchronization of clocks of a secondary implantable medical device (IMD) to a clock of a primary IMD. The secondary IMD includes a communications clock. The communications clock may be synchronized based on at least one received communications pulse. The secondary IMD further includes a general purpose clock different than the communications clock. The general purpose clock may be synchronized based on at least one received power pulse. The communications clock may also be synchronized based on the at least one received power pulse.
摘要:
An implantable medical sensor system provides signals representative of a magnitude of moment fraction applied to a sensor module at a selected site. A sensor module includes a first transducer producing a first signal having an associated first response to pressure and strain applied to the sensor module and a second transducer producing a second signal having an associated second response to pressure and strain applied to the sensor module. A moment fraction is computed in response to the first signal and the second signal. In various embodiments, the moment fraction is used to guide positioning of the sensor module, indicate a need for repositioning the sensor module, report loading of the sensor module during normal operation for use as sensor design information and in setting sensor calibration ranges.
摘要:
A resistor-capacitor oscillator circuit (10) is provided and includes a voltage comparator circuit (12). A capacitor (20) is connected to an input terminal (14) of the voltage comparator circuit (12). A resistor divider network (30) is coupled to an input terminal (16) of the voltage comparator circuit (12) for generating a reference voltage. A delay circuit (50, 52) is coupled to an output terminal (42) of the voltage comparator circuit (12). A discharge device (54) is coupled to the delay circuit (50, 52) and to the capacitor (20) for discharging the capacitor (20). A switching device (40) is coupled to the output (42) of the voltage comparator circuit (12) and to the resistor divider network (30) for controlling the application of the reference voltage to voltage comparator circuit (12).
摘要:
In general, this disclosure describes techniques for reducing power consumption within an implantable medical device (IMD). An IMD implanted within a patient may have finite power resources that are intended to last several years. To promote device longevity, sensing and therapy circuits of the IMD are designed to incorporate an analog-to-digital converter (ADC) that provides relatively high resolution output at a relatively low operation frequency, and does so with relatively low power consumption. An ADC designed in accordance with the techniques described herein utilizes a quantizer that has a lower resolution than a digital-to-analog converter (DAC) used for negative feedback. Such a configuration provides the benefits of higher resolution DAC feedback without having the use high oversampling ratios that result in high power consumption. Also, the techniques avoid the use of, and the associated high power consumption of, a high resolution flash ADC, within the sigma delta loop.
摘要:
A sidetone circuit (44) is connected to the terminals of a two-line telephone system. The sidetone circuit (44) receives inputs from a DTMF source (62) and a microphone (72). These inputs are selectively passed through a circuit (82) to produce a modulating signal which controls a current source (46) and a current (54). The current source (46) is connected between the telephone line terminals. The input audio signal from the microphone (72) modulates the current source (46) to impress a voltage upon the telephone line. The current source (54) is connected between a first of the telephone lines and a balance node (60). A resistor (58) is connected between the balance node and the second of the telephone lines. An incoming audio signal over the telephone line is coupled to the balance node (60) for summing with an inverted audio signal. The input audio signal from the microphone (72) is further coupled to the balance node (60). The inverted subscriber audio signal serves to attenuate the noninverted subscriber audio signal. The resulting signal at the balance node (60) is coupled through a capacitor (120) to an amplifier (88) for driving an output speaker (104). As a result of this circuit configuration the incoming audio signal has a minimum attenuation while a maximum amplitude signal is applied to the telephone line and a controlled sidetone signal is returned to the subscriber's speaker (104).