摘要:
There is described an analysis method for at least one image data record of an examination object, wherein each image data record features a multiplicity of image data elements. A position in a multidimensional space is assigned to each image data element. Each image data element features an image data value. The image data values of positionally corresponding image data elements of the image data records are specified by means of at least essentially positionally identical regions of the examination object. A computer automatically divides the image data records into empty regions and signal regions, applying an overall assignment rule which is based on the image data values of the image data elements of a plurality of image data records, such that each image data element of each image data record is assigned to either its empty region or its signal region. For each image data record, the computer automatically determines a closed outline which fully contains the signal region of the relevant image data record and, on the basis of the closed outline of the relevant image data record, determines an analysis region such that a further analysis of the relevant image data record can be restricted to its analysis region.
摘要:
The present invention relates to a method and to a device for visualizing objects, in particular non-rigid objects. The method and the device are particularly suitable to visualizing three-dimensional objects in the case of medical interventions.The method comprises: providing a three-dimensional image data record of the object, successively taking a series of two-dimensional image data records of the object, individually registering each individual two-dimensional image data record with the three-dimensional image data record, functionally evaluating functional parameters from the successively taken two-dimensional images, extracting two-dimensional projections from the three-dimensional image data record, and superimposing the recorded two-dimensional images with the extracted two-dimensional projections. A clean copy of the abstract that incorporates the above amendments is provided herewith on a separate page.
摘要:
There is described an analysis method for at least one image data record of an examination object, wherein each image data record features a multiplicity of image data elements. A position in a multidimensional space is assigned to each image data element. Each image data element features an image data value. The image data values of positionally corresponding image data elements of the image data records are specified by means of at least essentially positionally identical regions of the examination object. A computer automatically divides the image data records into empty regions and signal regions, applying an overall assignment rule which is based on the image data values of the image data elements of a plurality of image data records, such that each image data element of each image data record is assigned to either its empty region or its signal region. For each image data record, the computer automatically determines a closed outline which fully contains the signal region of the relevant image data record and, on the basis of the closed outline of the relevant image data record, determines an analysis region such that a further analysis of the relevant image data record can be restricted to its analysis region.
摘要:
A system and method for obtaining perfusion images is disclosed. The system and method includes hardware and software for determining physiological characteristics of a patient and determining imaging parameter values for an imaging modality based on the patient's physiological characteristics. The system also includes a controller operative to receive the imaging parameter values for controlling an X-ray device. The X-ray device is coupled with the controller and acquires projection images of the patient, and outputs the projection images to a perfusion evaluation computer for evaluating the perfusion of an region of interest represented in the projection images. The perfusion rate of the region of interest is then output to an output device, such as a display or printer.
摘要:
The invention relates to a method for reconstructing a 3D presentation of a hollow organ based on two-dimensional catheter images, comprising: detecting at least two fluoroscopy images at two different angles of the hollow organ; determining a start position of the catheter from the fluoroscopy images in a three-dimensional model of the hollow organ or a catheter guide; determining a probable withdrawal path of the catheter based on the three-dimensional model; withdrawing the catheter while recording the catheter images and assigning a withdrawal length to each catheter image; determining the deviation of the position of the catheter from a central path running through the middle of the hollow organ and the orientation of the catheter for each catheter image based on the withdrawal path and the withdrawal length; and reconstructing the 3D presentation from the two-dimensional catheter images as well as the deviation of the position of the catheter.
摘要:
Data of an examination object comprises a volume-data record and a plurality of two-dimensional projection images. The volume-data record includes voxels where each voxel is assigned to a location in three-dimensional space. Each projection image includes pixels where each pixel is assigned to a location in a two-dimensional-projection plane and has a value. Each pixel is assigned a projection volume, this being specified in that it is mapped by the radioscopy onto the pixel to which it is assigned. A sub-volume of the volume-data record is selected. The projection images are registered in relation to the volume-data record. A functional parameter of the examination object is specified for the pixels of the projection images, depending on their values. For each pixel, when specifying the functional parameter, consideration is given to the locations and/or the number of those voxels which are positioned both within the sub-volume and within the projection volume.
摘要:
2-D projection images show the temporal profile of the distribution of a contrast medium in an examination object, which contains a vascular system and its surroundings. Each projection image comprises pixels with pixel values. The pixel values of pixels corresponding to one another in the projection images are defined by at least essentially locationally identical areas of the examination object. A computer assigns a uniform 2-D evaluation core that is uniform for all corresponding pixels at least in a sub-area of pixels corresponding to one another in the projection images that is uniform for the projection images. The computer defines at least one characteristic value for each pixel within each projection image based on the evaluation core assigned to the pixel and assigns it to the relevant pixel. Based on the temporal profile of the characteristic values, the computer defines parameters of at least one function of time, so that any deviation between the function parameterized with the parameters and the temporal profile of the characteristic values is minimized. Based on the parameters the computer defines a type and/or an extent and assigns them to a pixel of a 2-D evaluation image corresponding to the pixels of the projection images. The type indicates whether the respective pixel of the evaluation image corresponds to a vessel of the vascular system, a perfused part or a non-perfused part of the surroundings of a vessel of the vascular system. The extent is characteristic of perfusion. The computer outputs at least the sub-area of the evaluation image to a user via a display device.
摘要:
A method for positioning a stent able to be deployed to support a vessel in a blood vessel, especially in the cardiology, with the stent after its provisional placement in a not yet deployed state in an area intended for the support of the vessel, being at least partly automatically deployed as a function of at least one triggering signal for final positioning in the blood vessel.
摘要:
The invention relates to a medical examination and/or treatment apparatus comprising an x-ray image recording device, a radiation source, a radiation receiver, a control and processing device and an image generating device, wherein at least one invasive sensor device with an imaging system can be connected to the medical examination and/or treatment apparatus via a multi-modality interface which is implemented as a universal interface via which different invasive sensor devices can be connected.
摘要:
A method and appertaining system permit a co-registration between points in a three-dimensional model of a vessel and vascular images obtained by an imaging catheter within the vessel at the respective points. The three-dimensional model is created by utilizing information from at least two external two-dimensional images produced by, e.g., one or more x-ray devices. The three-dimensional model is displayed on an analysis workstation, and a user may view the vascular images at particular points by selecting the appertaining points on the three-dimensional model.