摘要:
An infrared (IR) simulator is disclosed in which an array of pixels is defined on an insulative substrate by resistor bridges which contact the substrate at spaced locations and are separated from the substrate, and thereby thermally insulated therefrom, between the contact locations. Semiconductor drive circuits on the substrate enable desired current flows through the resistor bridges in response to input control signals, thereby establishing the appropriate IR radiation from each of the pixels. The drive circuits and also at least some of the electrical lead lines are preferably located under the resistor bridges. A thermal reflector below each bridge shields the drive circuit and reflects radiation to enhance the IR output. The drive circuits employ sample and hold circuits which produce a substantially flicker-free operation, with the resistor bridges being impedance matched with their respective drive circuits. The resistor bridges may be formed by coating insulative base bridges with a resistive layer having the desired properties, and overcoating the resistive layers with a thermally emissive material. The array is preferably formed on a silicon-on-sapphire (SOS) wafer. Arrays of electromagnetic radiation bridge detectors may also be formed, with the bridges having either resistor, thermocouple or Schottky junction constructions.
摘要:
An infrared (IR) radiation transducer integrates an IR detector array with a liquid crystal (LC) readout. The IR detector is preferably a pixelized bolometer array, but other detectors such as pyroelectric materials are possible. To modulate the LC in response to detected IR radiation, a modulating section is provided that includes a charge injection structure which injects electrical charge in response to the detected IR radiation, and a charge transfer structure that transfers the injected charge to the LC readout section. During its active phase the charge transfer layer is depleted of majority charge carriers, and the charge injection and transfer mechanism operates in a manner analogous to a bipolar transistor. A visible readout is obtained by directing readout light through the LC, where it is modulated in accordance with the detected IR image. The transducers are small and light weight enough to be incorporated into a pair of goggles, for which no separate cooling is required.
摘要:
A pulsed readout technique is described for liquid crystal light valves which eliminates the problem of readout beam leakage through the light valve mirror. The readout beam is pulsed on only when the light valve's semiconductor layer is out of a depletion state. This can occur during an accumulation state or, in certain applications, during a specially inserted quiescent period in the light valve voltage cycle. The invention is applicable to light valves with various types of modulating inputs, and can be used with either dielectric or metal matrix mirrors.
摘要:
A liquid crystal light valve is provided with an array of photoconductive pedestals surrounded by a dielectric matrix material. Metal mirror pads are formed on top of each pedestal to form a high resolution metal matrix mirror, with each pedestal/mirror combination servicing one image pixel. The dielectric matrix forms a potential barrier between the individual photoconductive pedestals which prevents lateral charge migration between pedestals. The metal matrix mirror also shields the underlying photoconductive pedestal from photoactivation by the readout beam. The dielectric matrix material has a lower dielectric constant than the photoconductive pedestals, allowing the impedance of the photoconductive pedestals to match the impedance of the liquid crystal layer with a much thinner layer of photoconductive material than in prior LCLVs using a continuous photoconductive layer. The thinner photoconductive layer results in higher electric fields which improve the LCLV's response time, photodegradation rate, spatial resolution and spectral response.
摘要:
This invention is directed to a semiconductor structure that includes at least one wafer that is fully depleted of all mobile carriers and is used as a medium for the movement of spatially modulated signal represented by charge carriers through the wafer with a spatial resolution that is smaller than the thickness of the wafer. This may be used in the form of a continuous high resolution silicon photodiode substrate to serve as an image input means for an electro-optical display medium, such as a liquid crystal. Next to the photoactivated substrate is a liquid crystal and next to the crystal is a transparent electrode. The photodiode is reverse biased and both of its sides are depleted of all mobile charges throughout its entire thickness. Thus, charges generated in the substrate move to the display not by diffusion as in prior art devices (e.g. the solid state silicon vidicon) but by the influence of the electric field which tends to minimize their lateral spread and thereby achieves a high spatial resolution in spite of the continuous character of this silicon diode device.
摘要:
There is disclosed a single crystal silicon charge storage apparatus suitable for use in an alternating current driven liquid crystal light valve having therein a PIN photodiode structure. The charge storage medium is made of a high resistivity substrate on which an MOS capacitor is formed having fast photoelectric transient response an capable of operating over a wide frequency range. A PIN photodiode structure is provided on one side of the substrate next to the MOS capacitor to deplete the substrate of its mobile charge carriers during a portion of the AC cycle and to collect the electric field-guided signal representing charge carriers that are generated or introduced into the substrate by an input mechanism. The signal from the substrate is electrically coupled through high-reflectivity mirrors and light blocking layers to the liquid crystal.
摘要:
There is disclosed a single crystal silicon charge storage apparatus suitable for use in an alternating current driven liquid crystal light valve having therein a moderately doped microchannel stop grid. The charge storage medium is made of a high resistivity substrate on which an MOS capacitor is formed having fast photoelectric transient response and capable of operating over a wide frequency range. A doped microgrid structure is formed in one side of the substrate to prevent charge carrier spreading at the silicon-silicon dioxide interface and to provide a focusing electric field for the charge carriers. The signal from the substrate is electrically coupled through high-reflectivity mirrors and light blocking layers to the liquid crystal.
摘要:
There is disclosed a single crystal silicon charge storage apparatus suitable for use in an alternating current driven liquid crystal light valve. The charge storage medium is made of a high resistivity and photosensitive under AC excitation substrate on which an MOS capacitor is formed having fast photoelectric transient response and capable of operating over a wide frequency range. The AC activation provides to a liquid crystal light valve a greatly improved electrochemical stability. Electrically coupled high-reflectivity mirrors and light blocking layers can be used to couple the liquid crystal to the MOS capacitor.
摘要:
There is disclosed an anisotropically conductive interface comprising a plurality of cermet and dielectric layers for use in electro-optical devices to separate a substrate driver from an electro-optical display medium to prevent display light from affecting the driver. The substrate may be a photosensor, a charge coupled device or other matrix addressing circuitry arrangement. In general the substrate is one which can provide spatially modulated voltage and/or current patterns. The display medium may be a liquid crystal, an electro-chromic, an electro-luminescent material or the like. The interface provides direct current conductivity through the interface, insulative maintenance of the spatial modulation of the signal across the interface, light reflectivity, and high attenuation of transmitted light.
摘要:
A single-Schottky liquid crystal is disclosed in which a series of Schottky contacts are made on one side of a photoconductor substrate by a metal matrix mirror, with a doped semiconductor back contact electrode on the other side of the substrate. The light valve offers several operational advantages over MOS devices, and is easier to fabricate than double-Schottky light valves. It can be operated either in an AC mode or, by doping the liquid crystal ions, in a DC mode.