摘要:
A plasma processing operation uses a gas mixture of N2 and H2 to both remove a photoresist film and treat a low-k dielectric material. The plasma processing operation prevents degradation of the low-k material by forming a protective layer on the low-k dielectric material. Carbon from the photoresist layer is activated and caused to complex with the low-k dielectric, maintaining a suitably high carbon content and a suitably low dielectric constant. The plasma processing operation uses a gas mixture with H2 constituting at least 10%, by volume, of the gas mixture.
摘要:
A plasma processing operation uses a gas mixture of N2 and H2 to both remove a photoresist film and treat a low-k dielectric material. The plasma processing operation prevents degradation of the low-k material by forming a protective layer on the low-k dielectric material. Carbon from the photoresist layer is activated and caused to complex with the low-k dielectric, maintaining a suitably high carbon content and a suitably low dielectric constant. The plasma processing operation uses a gas mixture with H2 constituting at least 10%, by volume, of the gas mixture.
摘要翻译:等离子体处理操作使用N 2和H 2的气体混合物去除光致抗蚀剂膜并处理低k电介质材料。 等离子体处理操作通过在低k电介质材料上形成保护层来防止低k材料的劣化。 来自光致抗蚀剂层的碳被激活并与低k电介质复合,保持适当高的碳含量和合适的低介电常数。 等离子体处理操作使用构成气体混合物的至少10体积%的H 2 N 2气体混合物。
摘要:
A method and system for determining the dielectric constant of a low-k dielectric film on a production substrate include measuring the electronic component of the dielectric constant using an ellipsometer, measuring the ionic component of the dielectric constant using an IR spectrometer, measuring the overall dielectric constant using a microwave spectrometer and deriving the dipolar component of the dielectric constant. The measurements and determination are non-contact and may be carried out on a production device that is further processed following the measurements.
摘要:
A method and system for determining the dielectric constant of a low-k dielectric film on a production substrate include measuring the electronic component of the dielectric constant using an ellipsometer, measuring the ionic component of the dielectric constant using an IR spectrometer, measuring the overall dielectric constant using a microwave spectrometer and deriving the dipolar component of the dielectric constant. The measurements and determination are non-contact and may be carried out on a production device that is further processed following the measurements.
摘要:
A plasma containing 5-10% oxygen and 90-95% of an inert gas strips photoresist from over a low-k dielectric material formed on or in a semiconductor device. The inert gas may be nitrogen, hydrogen, or a combination thereof, or it may include at least one of nitrogen, hydrogen, NH3, Ar, He, and CF4. The operating pressure of the plasma may range from 1 millitorr to 150 millitor. The plasma removes photoresist, the hard skin formed on photoresist during aggressive etch processes, and polymeric depositions formed during etch processes. The plasma strips photoresist at a rate sufficiently high for production use and does not appreciably attack carbon-containing low-k dielectric materials. An apparatus including a plasma tool containing a semiconductor substrate and the low oxygen-content plasma, is also provided.
摘要:
A plasma containing 5–10% oxygen and 90–95% of an inert gas strips photoresist from over a low-k dielectric material formed on or in a semiconductor device. The inert gas may be nitrogen, hydrogen, or a combination thereof, or it may include at least one of nitrogen, hydrogen, NH3, Ar, He, and CF4. The operating pressure of the plasma may range from 1 millitorr to 150 millitor. The plasma removes photoresist, the hard skin formed on photoresist during aggressive etch processes, and polymeric depositions formed during etch processes. The plasma strips photoresist at a rate sufficiently high for production use and does not appreciably attack carbon-containing low-k dielectric materials. An apparatus including a plasma tool containing a semiconductor substrate and the low oxygen-content plasma, is also provided.
摘要:
Methods and structures for forming a contact hole structure are disclosed. These methods first form a substantially silicon-free material layer over a substrate. A material layer is formed over the substantially silicon-free material layer. A contact hole is formed within the substantially silicon-free material layer and the material layer without substantially damaging the substrate. In addition, a conductive layer is formed in the contact hole so as to form a contact structure.
摘要:
Methods and structures for forming a contact hole structure are disclosed. These methods first form a substantially silicon-free material layer over a substrate. A material layer is formed over the substantially silicon-free material layer. A contact hole is formed within the substantially silicon-free material layer and the material layer without substantially damaging the substrate. In addition, a conductive layer is formed in the contact hole so as to form a contact structure.
摘要:
A semiconductor device. A diffusion barrier layer overlies a substrate. An adhesion promoting layer overlies the diffusion barrier layer. A first dielectric layer between the diffusion barrier layer and the adhesion promoting layer comprises at least one via opening through the diffusion barrier layer and the adhesion promoting layer. A second dielectric layer overlies the adhesion promoting layer, comprising a trench opening above the via opening. A metal interconnect fills the via and trench openings.
摘要:
A semiconductor device. A diffusion barrier layer overlies a substrate. An adhesion promoting layer overlies the diffusion barrier layer. A first dielectric layer between the diffusion barrier layer and the adhesion promoting layer comprises at least one via opening through the diffusion barrier layer and the adhesion promoting layer. A second dielectric layer overlies the adhesion promoting layer, comprising a trench opening above the via opening. A metal interconnect fills the via and trench openings.