摘要:
A method and system for repairing defective memory in a semiconductor chip. The chip has memory locations, redundant memory, and a central location for ordered fuses. The ordered fuses identify in compressed format defective sections of the memory locations. The defective sections are replaceable by sections of the redundant memory. The ordered fuses have an associated a fuse bit pattern of bits which sequentially represents the defective sections in the compressed format. The method and system determines the order in which the memory locations are wired together; designs a shift register of latches through the memory locations in accordance with the order in which the memory locations are wired together; and associates each of the latches with a corresponding bit of an uncompressed bit pattern from which the fuse bit pattern is derived. The uncompressed bit pattern comprises a sequence of bits, representing the defective sections in uncompressed format.
摘要:
A method and system for repairing defective memory in a semiconductor chip. The chip has memory locations, redundant memory, and a central location for ordered fuses. The ordered fuses identify in compressed format defective sections of the memory locations. The defective sections are replaceable by sections of the redundant memory. The ordered fuses have an associated a fuse bit pattern of bits which sequentially represents the defective sections in the compressed format. The method and system determines the order in which the memory locations are wired together; designs a shift register of latches through the memory locations in accordance with the order in which the memory locations are wired together; and associates each of the latches with a corresponding bit of an uncompressed bit pattern from which the fuse bit pattern is derived. The uncompressed bit pattern comprises a sequence of bits, representing the defective sections in uncompressed format.
摘要:
It is, therefore, an object of the present invention to provide a structure and method of blowing fuses in a semiconductor chip that includes creating a design for the chip using a library, generating test data from the design, extracting the fuse related information from the design to prepare a fuse blow table, building the chip with the design data, testing the chip to produce failed data, comparing the fuse blow table to the failed data to determine the fuse blow location data, and blowing the selected fuses based on the fuse blow location data. The extraction method can include creating a fuse map file based upon a correlation between physical pin locations on the chip and different fuse macros within the design, wherein an order of fuses within the fuse blow table matches an order of fuses within the fuse map file.
摘要:
A method for design auditing by automating ways of auditing data produced by process steps is disclosed. The invention automates the process of auditing to account for complex methodology conditions. It also automates auditing of values of data produced by methodology steps. The invention provides a means of grouping task and information within a program and of preserving parent-child relationships.
摘要:
A integrated circuit (IC) chip with ESD robustness and the system and method of wiring the IC chip. Minimum wire width and maximum resistance constraints are applied to each of the chip's I/O ports. These constraints are propagated to the design. Array pads are wired to I/O cells located on the chip. Unused or floating pads may be tied to a power supply or ground line, either directly or through an electrostatic discharge (ESD) protect device. A multi-supply protect device (ESDxx) coupled between pairs of supplies and ground or to return lines is also included. Thus, wiring is such that wires and vias to ESD protect devices are wide enough to provide adequate ESD protection. Robust ESD protection is afforded all chip pads. The design may then be verified.
摘要:
Macro design techniques are disclosed for facilitating subsequent stage wiring across the macro. Whitespace areas within the macro are rearranged to accommodate the wiring. The rearrangement may take the form of physical rearrangement of the whitespace areas into routing tracks extending from one side of the macro to another; shielding using, for example, macro power bussing and/or macro wiring; routing power busses to the rearranged whitespace; and/or inserting active circuits with pins accessible to the wiring. In a preferred embodiment, active circuits are placed into rearranged macro whitespace during the design of subsequent stages. The rearrangement of the whitespace facilitates the wiring across the macro so that slew rate and path delay requirements of the subsequent stage wiring can be maintained, without excessive buffering or rerouting of wiring.
摘要:
Macro design techniques are disclosed for facilitating subsequent stage wiring across the macro. Whitespace areas within the macro are rearranged to accommodate the wiring. The rearrangement may take the form of physical rearrangement of the whitespace areas into routing tracks extending from one side of the macro to another; shielding using, for example, macro power bussing and/or macro wiring; routing power busses to the rearranged whitespace; and/or inserting active circuits with pins accessible to the wiring. In a preferred embodiment, active circuits are placed into rearranged macro whitespace during the design of subsequent stages. The rearrangement of the whitespace facilitates the wiring across the macro so that slew rate and path delay requirements of the subsequent stage wiring can be maintained, without excessive buffering or rerouting of wiring.
摘要:
Macro design techniques are disclosed for facilitating subsequent stage wiring across the macro. Whitespace areas within the macro are rearranged to accommodate the wiring. The rearrangement may take the form of physical rearrangement of the whitespace areas into routing tracks extending from one side of the macro to another; shielding using, for example, macro power bussing and/or macro wiring; routing power busses to the rearranged whitespace; and/or inserting active circuits with pins accessible to the wiring. In a preferred embodiment, active circuits are placed into rearranged macro whitespace during the design of subsequent stages. The rearrangement of the whitespace facilitates the wiring across the macro so that slew rate and path delay requirements of the subsequent stage wiring can be maintained, without excessive buffering or rerouting of wiring.