Spectroscopic systems and methods for classifying and pharmaceutically treating cells
    1.
    发明授权
    Spectroscopic systems and methods for classifying and pharmaceutically treating cells 有权
    用于分类和药物治疗细胞的光谱系统和方法

    公开(公告)号:US08379197B2

    公开(公告)日:2013-02-19

    申请号:US12462350

    申请日:2009-08-03

    IPC分类号: G01J3/00 G01J3/44

    摘要: A system and method to distinguish normal cells from cells having undergone a biochemical change. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference spectral data sets for normal cells and a second plurality of reference spectral data sets for cells having undergone a biochemical change. A sample is irradiated to generate a target spectral data set based on photons absorbed, reflected, emitted, or scattered by the sample. The target spectral data set is transformed into a pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, cells having undergone a biochemical change, and combinations thereof. The method includes treating the sample with a pharmaceutical agent prior to irradiating the sample and using the classification to assess the efficiency of the pharmaceutical agent.

    摘要翻译: 将正常细胞与经历生物化学变化的细胞区分开的系统和方法。 选择预定向量空间,其中矢量空间数学地描述正常小区的第一多个参考频谱数据集,以及经历生物化学变化的小区的第二多个参考频谱数据集。 照射样品以基于样品吸收,反射,发射或散射的光子产生目标光谱数据集。 将目标光谱数据集转换为预定向量空间。 在预定向量空间中分析变换数据的分布。 基于该分析,将样品分类为含有正常细胞,经历生物化学变化的细胞及其组合。 该方法包括在照射样品之前用药剂处理样品并使用分类来评估药剂的效率。

    System and method for classifying cells and the pharmaceutical treatment of such cells using Raman spectroscopy
    2.
    发明申请
    System and method for classifying cells and the pharmaceutical treatment of such cells using Raman spectroscopy 有权
    使用拉曼光谱分析细胞的系统和方法以及这种细胞的药物处理

    公开(公告)号:US20070153268A1

    公开(公告)日:2007-07-05

    申请号:US11650378

    申请日:2007-01-05

    IPC分类号: G01J3/44 G01N21/65

    摘要: A system and method to distinguish normal cells from apoptotic cells. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference Raman data sets for normal cells and a second plurality of reference Raman data sets for apoptotic cells. A sample is irradiated with substantially monochromatic light generating a target Raman data set based on scattered photons. The target Raman data set is transformed into a vector space defined by the pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, apoptotic cells, and a combination of normal and apoptotic cells. The sample includes the step of treating the sample with a pharmaceutical agent prior to irradiating the sample. Based on the classification, the therapeutic efficiency of the pharmaceutical agent is assessed.

    摘要翻译: 将正常细胞与凋亡细胞区分开的系统和方法。 选择预定矢量空间,其中矢量空间在数学上描述用于正常细胞的第一多个参考拉曼数据集和用于凋亡细胞的第二多个参考拉曼数据集。 用基本上单色的光照射样品,产生基于散射光子的目标拉曼数据集。 目标拉曼数据集被转换成由预定向量空间定义的向量空间。 在预定向量空间中分析变换数据的分布。 基于分析,样品被分类为含有正常细胞,凋亡细胞,以及正常细胞和凋亡细胞的组合。 样品包括在照射样品之前用药剂处理样品的步骤。 根据分类,评估药剂的治疗效果。

    Raman Chemical Imaging of Implantable Drug Delivery Devices
    3.
    发明申请
    Raman Chemical Imaging of Implantable Drug Delivery Devices 有权
    可植入药物递送装置的拉曼化学成像

    公开(公告)号:US20100033717A1

    公开(公告)日:2010-02-11

    申请号:US12537671

    申请日:2009-08-07

    IPC分类号: G01J3/44

    摘要: A system and method of determining an attribute of a biological tissue sample or a drug delivery device. A sample is illuminated with substantially monochromatic light to thereby generate Raman scattered photons. The Raman scattered photons are assessed to thereby generate a spectroscopic data set wherein said spectroscopic data set comprises at least one of: a Raman spectra and a spatially accurate wavelength resolved image. Tile spectroscopic data set is evaluated to determine at least one of: an attribute of a biological tissue sample and a drug delivery device. In one embodiment, the biological tissue comprises arterial tissue. In another embodiment, the drug delivery device is a drug-eluting stent. In another embodiment, Raman chemical imaging can be used to evaluate a sample and identify at least one of: the tissue, a drug, a drug delivery device, and a matrix associated with a drug delivery device.

    摘要翻译: 一种确定生物组织样品或药物递送装置的属性的系统和方法。 用基本单色光照射样品,从而产生拉曼散射光子。 评估拉曼散射光子,从而产生光谱数据集,其中所述光谱数据集包括拉曼光谱和空间上准确的波长分辨图像中的至少一个。 评估平铺光谱数据集以确定生物组织样品和药物递送装置的属性中的至少一个。 在一个实施方案中,生物组织包含动脉组织。 在另一个实施方案中,药物递送装置是药物洗脱支架。 在另一个实施方案中,拉曼化学成像可用于评估样品并鉴定组织,药物,药物递送装置和与药物递送装置相关联的基质中的至少一种。

    Raman chemical imaging of implantable drug delivery devices
    4.
    发明授权
    Raman chemical imaging of implantable drug delivery devices 有权
    可植入药物递送装置的拉曼化学成像

    公开(公告)号:US08416405B2

    公开(公告)日:2013-04-09

    申请号:US12537671

    申请日:2009-08-07

    IPC分类号: G01J3/44

    摘要: A system and method of determining an attribute of a biological tissue sample or a drug delivery device. A sample is illuminated with substantially monochromatic light to thereby generate Raman scattered photons. The Raman scattered photons are assessed to thereby generate a spectroscopic data set wherein said spectroscopic data set comprises at least one of: a Raman spectra and a spatially accurate wavelength resolved image. The spectroscopic data set is evaluated to determine at least one of: an attribute of a biological tissue sample and a drug delivery device. In one embodiment, the biological tissue comprises arterial tissue. In another embodiment, the drug delivery device is a drug-eluting stent. In another embodiment, Raman chemical imaging can be used to evaluate a sample and identify at least one of: the tissue, a drug, a drug delivery device, and a matrix associated with a drug delivery device.

    摘要翻译: 一种确定生物组织样品或药物递送装置的属性的系统和方法。 用基本单色光照射样品,从而产生拉曼散射光子。 评估拉曼散射光子,从而产生光谱数据集,其中所述光谱数据集包括拉曼光谱和空间上准确的波长分辨图像中的至少一个。 评估光谱数据集以确定生物组织样品和药物递送装置的属性中的至少一个。 在一个实施方案中,生物组织包含动脉组织。 在另一个实施方案中,药物递送装置是药物洗脱支架。 在另一个实施方案中,拉曼化学成像可用于评估样品并鉴定组织,药物,药物递送装置和与药物递送装置相关联的基质中的至少一种。