Abstract:
A liquid crystal display is provided which is capable of reducing the occurrence of defective display due to variations in the initial alignment direction of a liquid crystal alignment control film in a liquid crystal display of an IPS scheme, realizing the stable liquid crystal alignment, providing excellent mass productivity, and having high image quality with a higher contrast ratio. The liquid crystal display has a liquid crystal layer disposed between a pair of substrates, at least one of the substrates being transparent, and an alignment control film formed between the liquid crystal layer and the substrate. At least one of the alignment control films 109 comprises photoreactive polyimide and/or polyamic acid provided with an alignment control ability by irradiation of substantially linearly polarized light.
Abstract:
An IPS type liquid crystal display device superior in mass productivity and improved in image quality with a higher contrast ratio by decreasing the occurrence of defective display due to the disorder of the initial liquid crystal alignment by the liquid orientation control film and realizing stable alignment of liquid crystals comprises: a pair of substrates, at least one which is transparent; a liquid crystal layer disposed between the pair of substrates; a group of electrodes formed on at least one of the pair of substrates to apply an electric field to the liquid crystal layer; plural active elements connected to the group of electrodes; and an orientation control film disposed on at least one of the pair of substrates, wherein said orientation control film is made of a photosensitive polyimide and a polyamide acid ester and is given orientation control ability by being irradiated with substantially linearly polarized light.
Abstract:
An IPS type liquid crystal display device superior in mass productivity and improved in image quality with a higher contrast ratio by decreasing the occurrence of defective display due to the disorder of the initial liquid crystal alignment by the liquid orientation control film and realizing stable alignment of liquid crystals comprises: a pair of substrates, at least one which is transparent; a liquid crystal layer disposed between the pair of substrates; a group of electrodes formed on at least one of the pair of substrates to apply an electric field to the liquid crystal layer; plural active elements connected to the group of electrodes; and an orientation control film disposed on at least one of the pair of substrates, wherein said orientation control film is made of a photosensitive polyimide and a polyamide acid ester and is given orientation control ability by being irradiated with substantially linearly polarized light.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A liquid crystal display device includes first and second substrates, at least one of which is transparent, a liquid crystal layer which is disposed between the first and second substrates, a pixel electrode and a common electrode which are formed on one of the first and second substrates and which apply an electric field to the liquid crystal layer, a plurality of active elements which is connected to the pixel electrode and the common electrode, an alignment film which is disposed on at least one of the first and second substrates and has one surface contacting the liquid crystal layer, and an underlying layer which is disposed on at least one of the first and second substrates and contacts the other surface of the alignment film. The pixel electrode is laminated on the common electrode having a plane shape through an isolation film.
Abstract:
A liquid crystal display is provided which is capable of reducing the occurrence of defective display due to variations in the initial alignment direction of a liquid crystal alignment control film in a liquid crystal display of an IPS scheme, realizing the stable liquid crystal alignment, providing excellent mass productivity, and having high image quality with a higher contrast ratio. The liquid crystal display has a liquid crystal layer disposed between a pair of substrates, at least one of the substrates being transparent, and an alignment control film formed between the liquid crystal layer and the substrate. At least one of the alignment control films 109 comprises photoreactive polyimide and/or polyamic acid provided with an alignment control ability by irradiation of substantially linearly polarized light.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A light detection device includes a lower structure that is provided in a detection area and in a frame area surrounding the detection area, a plurality of pixel electrodes that are provided in array on the lower structure in the detection area, an organic photoelectric conversion layer that is provided on the plurality of pixel electrodes and continuously formed on the detection area and a part of the frame area, an upper electrode that is provided on the organic photoelectric conversion layer, and a transparent conductive protective layer that is provided on the lower structure in at least a part of the frame area and at least partially disposed under a part of a peripheral edge portion of the organic photoelectric conversion layer formed in the frame area.