Abstract:
A direct electrical connection is provided between transmission line segments of a data slipring and a data acquisition system. A transformer may be provided between the data acquisition system and the transmission line segments for correcting an impedance mismatch between the slipring and the electrical connection. A method of connecting the data slipring with the data acquisition system includes providing a controlled impedance electrical cable between the transmission line segments and the data acquisition system.
Abstract:
An x-ray tube is disclosed herein. The x-ray tube includes an anode assembly adapted to rotate generally about a rotational axis. The anode assembly includes a first target surface at least partially disposed at a first angle greater than 70 degrees with respect to the rotational axis and a second target surface at least partially disposed at a second angle greater than 70 degrees with respect to the rotational axis. The first target surface is adapted to emit a first x-ray beam and the second target surface is adapted to emit a second x-ray beam. A CT system is also disclosed.
Abstract:
Methods and apparatus for an imaging system are provided. The imaging system includes a gantry having a stationary member coupled to a rotating member. The rotating member has an opened area proximate an axis about which the rotating member rotates. An x-ray source provided on the rotating member. An x-ray detector may be disposed on the rotating member and configured to receive x-rays from the x-ray source. A rotary transformer having circumferentially disposed primary and secondary windings may form part of a contactless power transfer system that rotates the rotatable portion of the gantry at very high speeds, the primary winding being disposed on the stationary member and the secondary winding being disposed on the rotating member.
Abstract:
A series resonant circuit (SRC) which includes, in one embodiment, an inverter having four (4) IGBTs is described. The SRC also includes a series coupled inductor and capacitor, a transformer, and a diode bridge. The SRC further includes a controller which utilizes, simultaneously, phase and frequency modulation in conjunction with a logarithmic amplifier to control the inverter.
Abstract:
A method and apparatus are provided for minimizing output pulse jitters in a phase locked loop. The method includes pre-setting the digital phase locked loop to a desired frequency, locking the digital phase locked loop to the desired frequency to generate an output signal, and filtering the output signal of the digital phase locked loop to maintain undesirable jitter to an acceptable range. In one embodiment, the apparatus is a medical imaging device. In another embodiment, the apparatus is a baggage imaging device.
Abstract:
Methods and apparatus for an imaging system are provided. The imaging system includes a gantry having a stationary member coupled to a rotating member. The rotating member has an opened area proximate an axis about which the rotating member rotates. An x-ray source provided on the rotating member. An x-ray detector may be disposed on the rotating member and configured to receive x-rays from the x-ray source. A rotary transformer having circumferentially disposed primary and secondary windings may form part of a contactless power transfer system that rotates the rotatable portion of the gantry at very high speeds, the primary winding being disposed on the stationary member and the secondary winding being disposed on the rotating member.
Abstract:
A method and apparatus are provided for minimizing output pulse jitters in a phase locked loop. The method includes pre-setting the digital phase locked loop to a desired frequency, locking the digital phase locked loop to the desired frequency to generate an output signal, and filtering the output signal of the digital phase locked loop to maintain undesirable jitter to an acceptable range. In one embodiment, the apparatus is a medical imaging device. In another embodiment, the apparatus is a baggage imaging device.
Abstract:
A data transmission system that includes a transmitter; a receiver; and a magnetically coupled rotary transformer having a first portion and a second portion in moveable relationship with one another. The transmitter is electrically and mechanically coupled to the first portion of the rotary transformer, and the receiver is electrically and mechanically coupled to the second portion of the rotary transformer. The transmitter and the receiver are configured to wirelessly communicate data across the rotary transformer while the first and the second portions of the rotary transformer are in relative rotary motion.
Abstract:
In one aspect, the present invention provides a high voltage-high frequency electrical energy transformation apparatus comprising a frequency inverter capable of converting 60 Hz electrical energy into 40-100 KHz electrical energy; and a voltage transformer. The voltage transformer comprises a transformer housing; at least one soft magnetic core; a low voltage primary winding and a high voltage secondary winding; and a solid insulating material comprising polydicyclopentadiene. The solid insulating material is in contact with the high voltage secondary winding.
Abstract:
Apparatus includes a fixed computed tomography (CT) system including a storage device configured to share power delivery with an input power line in order to reduce peak load requirements of the input power line.