摘要:
Optical scanner system approaches are described in which novel focusing approaches are provided. A control algorithm accounts for geometric variation of successive scans in opposite directions across a microarray slide or substrate in order to provide optimized focus. The feedback approach taught may involve PI or PID terms. In either type of control approach, a projected slope of the slide is calculated and followed back and forth outside a scan region of the array in exiting and entering fully adaptive focusing zones, respectively. During turn-around, the system may track a setpoint between the periods of following the extrapolated slope. Also provided are methods of using the subject system in a biopolymer array based application, including genomic and proteomic applications.
摘要:
Automated methods and systems for determining an in-focus-distance for a position on the surface of a molecular array substrate using a molecular array scanner are provided. A signal from a first position of an array substrate is detected and noise is filtered out of the detected signal using a symmetrical filter to produce an in-focus-distance. In one embodiment, the in-focus-distance is utilized as an estimated in-focus-distance at a second position of the array substrate. The method finds use in maintaining the focus of a light source while scanning the array by the scanner. Also provided are methods of assaying a sample using the methods and systems of the invention, and kits for performing the invention. The subject invention finds use in a variety of different applications, including both genomics and proteomics applications.
摘要:
Methods, systems, and computer readable media for determining the quality of a CGH array, including calculating a spread of the derivative of log ratio value differences between consecutive probes representing consecutive positions along a chromosome, wherein ratio values are calculated from probe signals from a CGH array.
摘要:
Methods, systems and computer readable media for analysis of comparative genomic hybridization data analysis, including creating a centralization curve from log ratio data values for DNA copy numbers of a genome of a test sample relative to a genome of a reference sample, wherein the reference sample has a known ploidy, and the test sample has a same copy number as the reference sample in normal, non-aberrant genomic regions; identifying a peak corresponding to regions of normal copy number in the centralization curve; centralizing the log ratio data so that the peak corresponding to regions of normal copy number is centered at a log ratio value of zero; calculating a mathematical measurement that is a function of the width of the peak corresponding to regions of normal copy number; calculating a tolerance value as a function of the mathematical measurement; and outputting the tolerance value. Methods, systems and computer readable media are provided to create a centralization curve from log ratio data values for DNA copy numbers of a genome of a test sample relative to a genome of a reference sample, wherein the reference sample has a known ploidy, and the test sample has a same copy number as the reference sample in normal, non-aberrant genomic regions; identify peaks in the centralization curve; assign copy numbers to the identified peaks; plot expected ratios, based on the assigned copy numbers, of the peaks versus observed ratios of the peaks calculated from the log ratio data values; conclude that the assigned copy numbers are correct if the plot of the expected ratios versus the observed ratios is substantially linear; and output at least one of the plot of expected ratios versus observed ratios, and a conclusion as to whether the plot is substantially linear.
摘要:
An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
摘要:
Aspects of the disclosure are generally directed to methods, probes, probe compositions and kits for detecting or quantifying target oligonucleotides. In some embodiments, there are provided methods for determining the level of target oligonucleotides, such as a small RNA (e.g., miRNA), in a sample. In some embodiments, the methods comprise analyzing hybridization of target oligonucleotides to a test microarray; analyzing hybridization of a known amount of reference oligonucleotides (having the same sequences as the target oligonucleotides) to a calibration microarray; and determining the level of the target oligonucleotides in the sample by comparing the hybridization of the target oligonucleotides with the hybridization of the reference oligonucleotides.
摘要:
An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
摘要:
A method to calibrate measurements of a test analyte in a test sample including measuring at least one test-light level responsive to reactions of at least one reagent group and at least one reactive test analyte in the test sample and measuring at least one control-light level responsive to reactions of at least one reagent group and at least one control analyte in a control sample. Each control analyte is a known amount of at least one reactive test analyte. The method further includes determining a presence of the reactive test analyte in the test sample based on the measured test-light levels and control-light levels. The reagent group and the reactive test analyte react by attaching to each other.
摘要:
A method to calibrate measurements of a test analyte in a test sample including measuring at least one test-light level responsive to reactions of at least one reagent group and at least one reactive test analyte in the test sample and measuring at least one control-light level responsive to reactions of at least one reagent group and at least one control analyte in a control sample. Each control analyte is a known amount of at least one reactive test analyte. The method further includes determining a presence of the reactive test analyte in the test sample based on the measured test-light levels and control-light levels. The reagent group and the reactive test analyte react by attaching to each other.
摘要:
A maximum sensitivity optical scanning system is disclosed. It finds use in a variety of applications, including the reading of biopolymeric arrays. It operates by scanning sample at a setting selected to result in signal saturation for some, but not all available data. Subsequent scans of the same area are taken at lower sensitivity settings (in terms of detector gain and/or excitation light source gain or attenuation) and data from at least the previously saturated regions is obtained. If system sensitivity is set too low to produce useful results, optional features may adjust sensitivity upward and follow with an increased sensitivity scan as a remedial measure. Full signal sensitivity is better preserved as most needed in taking data for the weakest signals first with the high-level scan. Data for sample producing stronger signals that can better tolerate photobleaching is then taken in one way or another.