摘要:
The microwave torch comprises at least one gas supply conduit (1, 2); a resonant cavity (3) forming around the conduit a sleeve open adjacent to the outlet of the conduit and including a lateral opening (4); a transition coaxial structure perpendicular to the sleeve comprising, on one hand, an outer tube (5) connected to the lateral opening (4) of the sleeve and, on the other hand, an inner element (6) having one end (20) in contact with the conduit and an opposite end which is in contact with the outer surface of a wave guide (8) and carries a transition member (7) disposed in the wave guide; said wave guide supplying microwave energy and having a rectangular section and perpendicular to the coaxial structure (5, 6) being provided with an opening (27) where the outer tube (5) of the coaxial structure is connected; shielding gas supply means in the wave guide and/or the coaxial structure and/or the sleeve; optionally tuning means; and optionally plasma igniting means.
摘要:
A deposit of a silica base layer is formed on the surface of a glass product by projecting on a hot surface of the product, in a non confined ambient atmosphere, a gaseous mixture having a silane content lower than 2%, an oxygen content between 3.5 and 30%, and advantageously a hydrogen content lower than 5%. The surface of the object to be treated is advantageously heated immediately before being sent to the injection station.
摘要:
The invention relates to a device and a process for spraying a product, especially a liquid fuel, into a working space which is external to the device. The device includes a nozzle for prespraying the liquid fuel into a confinement chamber and an outlet for ejection of a presprayed mixture into the working space. An additional pipe is provided for ejection of a gaseous spraying stream into the presprayed mixture inside the working space, at the outlet which ejects the presprayed mixture. The invention is particularly applicable to burners for glass melting furnaces.
摘要:
Provided is a process for the production of a loop-shaped flame in a glass furnace. The furnace includes, in a rear part, a glass melting zone heated by injecting through at least one port a fuel gas and an oxidizer gas having more than 50 vol % of oxygen and, in a front part, a glass refining zone. The process involves defining a stoichiometry coefficient Ks of the flame in the melting zone or the refining zone according to the following formula: ##EQU1## The oxidizer gas and the fuel gas injected through at least the first port are adjusted to obtain a stoichiometry coefficient Ks in the glass melting zone equal to at most 0.8. A fuel-oxidizer mixture is injected into the refining zone to obtain a stoichiometry coefficient Ks in the refining zone which is greater than the stoichiometry coefficient Ks in the melting zone and which is between 0.8 and 1.5. An oxidizer gas is injected into the melting zone in the vicinity of a fume discharge zone to obtain a quantity of oxygen in the fumes of between 0.5 and 3% by volume. The invention has particular applicability to end-fired furnaces with recuperators in which the blocking of the recuperator makes it necessary to employ ports with oxygen during the blocking of the recuperator, to maintain output at an acceptable volume.
摘要:
A burner assembly having improved flame length and shape control is presented, which includes in exemplary embodiments at least one fuel fluid inlet and at least one oxidant fluid inlet, means for transporting the fuel fluid from the fuel inlet to a plurality of fuel outlets-, the fuel fluid leaving the fuel outlets in fuel streams that are injected into a combustion chamber, means for transporting the oxidant fluid from the oxidant inlets to at least one oxidant outlet, the oxidant fluid leaving the oxidant outlets in oxidant fluid streams that are injected into the combustion chamber, with the fuel and oxidant outlets being physically separated, and geometrically arranged in order to impart to the fuel fluid streams and the oxidant fluid streams angles and velocities that allow combustion of the fuel fluid with the oxidant in a stable, wide, and luminous flame. Alternatively, injectors may be used alone or with the refractory block to inject oxidant and fuel gases. The burner assembly affords improved control over flame size and shape and may be adjusted for use with a particular furnace as required.
摘要:
A burner assembly having improved flame length and shape control is presented, which includes in exemplary emodiments at least one fuel fluid inlet and at least one oxidant fluid inlet, means for transporting the fuel fluid from the fuel inlet to a plurality of fuel outlets, the fuel fluid leaving the fuel outlets in fuel streams that are injected into a combustion chamber, means for transporting the oxidant fluid from the oxidant inlets to at least one oxidant outlet, the oxidant fluid leaving the oxidant outlets in oxidant fluid streams that are injected into the combustion chamber, with the fuel and oxidant outlets being physically separated, and geometrically arranged in order to impart to the fuel fluid streams and the oxidant fluid streams angles and velocities that allow combustion of the fuel fluid with the oxidant in a stable, wide, and luminous flame. Alternatively, injectors may be used alone or with the refractory block to inject oxidant and fuel gases. The burner assembly affords improved control over flame size and shape and may be adjusted for use with a particular furnace as required.
摘要:
These gases, specially adapted to the need of CO.sub.2 lasers, have a total purity less than 99.995%, a water content lower than 5 vpm and a total hydrocarbon content lower than 5 vpm.