摘要:
The invention relates to a method and apparatus for improving properties of a solid material by providing shockwaves therethrough. The method includes controlling the incident angle &THgr; of the laser beam applied to the workpiece so that the required residual stresses are created in the workpiece. Particular methods of control such as lenses, polarizers, and particular transparent overlay geometries are shown. The apparatus includes structure for controlling the position and incident angle of the laser beam then controlling the polarization and/or the shape of the incident impact area, based on such incident angle &THgr; or thickness of the workpiece.
摘要:
A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece. Material may be removed from the compressive residual stress region through a workpiece surface different from the laser shock processed surface. Material may also be deposited onto the laser shock processed surface.
摘要:
A method and apparatus for measuring the quality of a laser peening process, which includes a test element, a mount for the test element, wherein the test element is mounted at a preselected point in the anticipated path of a laser pulse, the laser pulse irradiates the test element, the deflection of the test element is measured in the direction substantially perpendicular and away from the impacted surface of the test element, and the deflection measurement is compared to a previously generated chart showing the relationship between characteristics of test elements and desired material properties.
摘要:
A method of laser shock peening a workpiece including the steps of laser shock peening at least one surface of the workpiece so that it extends over an area of the workpiece and forms a region having compressive residual stresses imparted by the laser shock peening extending into the workpiece from the surface, and firing a laser beam to produce the laser shock peened surface with more than one row of laser beam spots, wherein adjacent laser beam spots and/or rows are one of touching or spaced apart from each other.
摘要:
A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece. Material may be removed from the compressive residual stress region through a workpiece surface different from the laser shock processed surface. Material may also be deposited onto the laser shock processed surface.
摘要:
A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece. Material may be removed from the compressive residual stress region through a workpiece surface different from the laser shock processed surface. Material may also be deposited onto the laser shock processed surface.
摘要:
Various laser shock processing methods are provided to establish selective compressive residual stress distribution profiles within a workpiece. An asymmetrical stress distribution profile may be formed through the thickness of a thin section of a gas turbine engine airfoil. One method involves simultaneously irradiating a workpiece with a set of laser beams to form a corresponding set of adjacent non-overlapping laser shock peened surfaces, enabling the shockwaves to encounter one another. Additionally, opposite sides of the workpiece may be irradiated at different times to form opposing laser shock peened surfaces, enabling the shockwaves to meet at a location apart from the mid-plane. Furthermore, opposite sides of the workpiece may be irradiated simultaneously using laser beams having different pulse lengths to form opposing laser shock peened surfaces. Moreover, opposite sides of the workpiece may be irradiated simultaneously to form a set of laterally offset laser shock peened surfaces.
摘要:
A method and apparatus for improving properties of a solid material by providing shockwaves therethrough. The method includes controlling the incident angle &THgr; of the laser beam applied to the workpiece so that the required residual stresses are created in the workpiece. Particular methods of control such as lenses, polarizers, and particular transparent overlay geometries are shown. The apparatus includes structure for controlling the position and incident angle of the laser beam then controlling the polarization and/or the shape of the incident impact area, based on such incident angle &THgr; or thickness of the workpiece.
摘要:
The invention includes a laser processing method for processing a hidden surface of a workpiece, the hidden surface disposed within a recess having an opening. The method comprises inserting a reflective member into the recess and directing a pulse of coherent energy to reflect off of said reflective member and impact the hidden surface of workpiece to create a shock wave. Alteratively a surface of the recess may be modified to laser shock process the hidden surface.
摘要:
A method and apparatus for improving properties of a solid material by providing shockwaves therethrough. The method includes controlling the incident angle .theta. of the laser beam applied to the workpiece so that the required residual stresses are created in the workpiece. Particular methods of control such as lenses, polarizers, and particular transparent overlay geometries are shown. The apparatus includes structure for controlling the position and incident angle of the laser beam then controlling the polarization and/or the shape of the incident impact area, based on such incident angle .theta..