摘要:
A method for processing fiber optic ferrules, the method comprising: providing a fiber optic ferrule defining an endface portion and a pedestal portion about one or more protruding optical fibers; mechanically polishing the one or more protruding optical fibers substantially flush with the pedestal portion; and non-mechanically eroding the pedestal portion about the one or more protruding optical fibers to a depth of at least the end face portion such that the one or more optical fibers remain protruding from the endface portion. Non-mechanically eroding may include laser erosion or chemical erosion.
摘要:
Methods for preparation and disposing of an optical fiber(s) into a blind hole(s) and related assemblies and methods of making same are disclosed. In one embodiment, a method for processing an optical fiber(s) is provided. The method includes processing an end portion(s) of the optical fiber(s) with a laser. The end portion(s) of the optical fiber(s) is disposed in a blind hole(s). The blind hole(s) may be disposed in a holding structure. The optical fiber(s) is attached to the holding structure. A fixture is also disclosed and may be used for retaining the optical fiber(s) in a channel(s) disposed in the fixture during preparation and/or disposing of the optical fiber(s) in the blind hole(s). An assembly prepared in accordance with the methods provided herein is also disclosed. In one embodiment, the assembly could include a holding structure assembly for an array of the optical fibers.
摘要:
Gradient index (GRIN) lens assemblies employing lens alignment channels, as well as fiber optic connectors and fiber optic cable assemblies employing such GRIN lens assemblies, are disclosed. In one embodiment, a GRIN lens assembly includes a lens holder body having a mating face, a surface extending from the mating face, and a lens alignment channel. The lens alignment channel is defined by a narrow portion extending from the surface to a first depth and at least partially along a length of the surface, and a wide portion extending from the narrow portion to a second depth. A lens opening defined by the wide portion of the lens alignment channel at the mating face is disposed in the mating face. The wide portion of the lens alignment channel is configured to support a GRIN lens disposed in the lens alignment channel.
摘要:
Indexable optical fiber connectors, optical connector arrays, and optical connector systems are disclosed. According to one embodiment, an optical fiber connector includes a connector body comprising an optical coupling face and a connector housing that surrounds the connector body. The connector housing includes a first interconnecting surface having an indentation arraying feature, and a second interconnecting surface having a protrusion arraying feature. The first interconnecting surface and the second interconnecting surface are orthogonal to the optical coupling face. The indentation arraying feature is configured to mate with a corresponding protrusion arraying feature of a first adjacent interconnecting optical fiber connector by a non-locking engagement relationship. Similarly, the protrusion arraying feature is configured to mate with a corresponding indentation arraying feature of a second adjacent optical fiber connector by a non-locking engagement relationship.
摘要:
A fiber optic interface device with a bent optical path has a ferrule with a body having front and rear ends and an internal cavity adjacent the front end and defined by a rear wall and a bottom wall. The bottom wall defines at least one lens. The device includes at least one optical waveguide that defines the bent optical path. The ferrule supports at least one optical waveguide so that the bent optical path resides within the cavity, with the fiber end being operably aligned with the at least one lens. A fiber optic interface assembly is formed by mating the device with a second fiber optic interface device.
摘要:
Receptacle ferrules with at least one monolithic lens system and fiber optic connectors using same are disclosed. Ferrule assemblies formed by mating plug and receptacle ferrules are also disclosed, as are connector assemblies formed by mating plug and receptacle connectors. The fiber optic connectors and connector assemblies are suitable for use with commercial electronic devices and provide either an optical connection, or both electrical and optical connections. The monolithic optical system defines a receptacle optical pathway having a focus at the receptacle ferrule front end. When a plug ferrule having a plug optical pathway is mated with the receptacle ferrule, the plug and receptacle optical pathways are optically coupled at a solid-solid optical pathway interface where light passing therethrough is either divergent or convergent, and where unwanted liquid is substantially expelled.
摘要:
Fiber optic connectors and other structures that can be easily and quickly prepared by the craft for termination and/or connectorization in the field are disclosed. More specifically, the fiber optic connectors and other structures disclosed are intended for use with glass optical fibers having a large core. In one embodiment, the fiber optic connector includes a ferrule having a bore sized to receive an optical fiber and a buffer layer at a front end face of the ferrule. Methods of making the fiber optic connectors and other structures are also disclosed. The methods disclosed allow “rough cutting” of the optical fibers with a buffer layer thereon by the craft.
摘要:
Optical connectors, optical coupling systems, and methods of optical coupling are disclosed. In one embodiment, an optical connector includes a plug housing, at least one optical fiber, an internal coupling surface, and a translating element. The translating element has a first coupling surface, a second coupling surface, and at least one optical component within the translating element. The translating element is biased such that when the optical connector is in a disengaged state, the translating element is positioned toward an optical connector opening and the second coupling surface of the translating element is displaced from the internal coupling surface. When the optical connector is in an engaged state, the translating element is positioned such that the second coupling surface of the translating element is positioned at the internal coupling surface and the optical fiber is optically coupled to the optical component.
摘要:
Fiber optic connectors and other structures that can be easily and quickly prepared by the craft for termination and/or connectorization in the field are disclosed. More specifically, the fiber optic connectors and other structures disclosed are intended for use with glass optical fibers having a large core. In one embodiment, the fiber optic connector includes a ferrule having a bore sized to receive an optical fiber and a buffer layer at a front end face of the ferrule. Methods of making the fiber optic connectors and other structures are also disclosed. The methods disclosed allow “rough cutting” of the optical fibers with a buffer layer thereon by the craft.
摘要:
An optical fiber segment includes a glass body with a first end face at a first end of the glass body and a second end face at a second end of the glass body. At least one of the first and second end faces includes a lead-in formation having a sidewall extending inwardly from an entrance at the at least one first and second end faces to an end, the entrance sized to at least partially receive a tip of an optical fiber.