摘要:
An assembly for shielding an implanted medical device from the effects of high-frequency radiation and for emitting magnetic resonance signals during magnetic resonance imaging. The assembly includes an implanted medical device and a magnetic shield comprised of nanomagnetic material disposed between the medical device and the high-frequency radiation. In one embodiment, the magnetic resonance signals are detected by a receiver, which is thus able to locate the implanted medical device within a biological organism.
摘要:
A high magnetic susceptibility nanomagnetic material that may be attached to recognition molecules and other therapeutic biological materials so as to be targeted to specific biologic tissues, thereby enabling the presence of the targeted tissue to be detected under magnetic resonance imaging with much greater sensitivity. Also a stent coated with such nanomagnetic material to enable artifact free imaging of such stent under magnetic resonance imaging.
摘要:
Disclosed in this specification is a stent coated with a layer comprised of particulates which have an average particle size of less than 100 nanometers; a saturation magnetization of at least 2,000 gauss; and where the average coherence length between the particulates is from about 1 nanometer to about 50 nanometers.
摘要:
A conductor assembly that contains a flexible conductor and a layer of nanomagnetic material coated onto the conductor. The layer of nanomagnetic material has a tensile modulus of elasticity of at least about 15×106 pounds per square inch, an average particle size of less than 100 nanometers, a saturation magnetization of from about 200 to about 26,000 Gauss, and a thickness of less than about 2 microns.
摘要:
A medical device includes a pattern of electrically conductive material. The pattern of electrically conductive material has an anti-antenna geometrical shape such that the anti-antenna geometrical shape substantially prevents the medical device from creating an imaging artifact and/or substantially allows imaging of a volume within the medical device. The pattern may be formed by multiple “figure-8” shaped electrical conductors, multiple “figure-8” emulating electrical conductors, multiple sine-wave-like shaped electrical conductors, multiple zig-zag patterned electrical conductors, by multiple electrical conductors, each having sequential conductive loops, and/or a single conductor weaved into a loop mesh. The electrically conductive material may be titanium, tantalum, nitinol, stainless steel, and/or NbZr.
摘要:
A medical device includes a pattern of electrically conductive material. The pattern of electrically conductive material has an anti-antenna geometrical shape such that the anti-antenna geometrical shape substantially prevents the medical device from creating an imaging artifact and/or substantially allows imaging of a volume within the medical device. The pattern may be formed by multiple “figure-8” shaped electrical conductors, multiple “figure-8” emulating electrical conductors, multiple sine-wave-like shaped electrical conductors, multiple zig-zag patterned electrical conductors, by multiple electrical conductors, each having sequential conductive loops, and/or a single conductor weaved into a loop mesh. The electrically conductive material may be titanium, tantalum, nitinol, stainless steel, and/or NbZr.
摘要:
A medical device includes a pattern of electrically conductive material. The pattern of electrically conductive material has an anti-antenna geometrical shape such that the anti-antenna geometrical shape substantially prevents the medical device from creating an imaging artifact and/or substantially allows imaging of a volume within the medical device. The pattern may be formed by multiple “figure-8” shaped electrical conductors, multiple “figure-8” emulating electrical conductors, multiple sine-wave-like shaped electrical conductors, multiple zig-zag patterned electrical conductors, by multiple electrical conductors, each having sequential conductive loops, and/or a single conductor weaved into a loop mesh. The electrically conductive material may be titanium, tantalum, nitinol, stainless steel, and/or NbZr.
摘要:
A medical device includes a pattern of electrically conductive material. The pattern of electrically conductive material has an anti-antenna geometrical shape such that the anti-antenna geometrical shape substantially prevents the medical device from creating an imaging artifact and/or substantially allows imaging of a volume within the medical device. The pattern may be formed by multiple “figure-8” shaped electrical conductors, multiple “figure-8” emulating electrical conductors, multiple sine-wave-like shaped electrical conductors, multiple zig-zag patterned electrical conductors, by multiple electrical conductors, each having sequential conductive loops, and/or a single conductor weaved into a loop mesh. The electrically conductive material may be titanium, tantalum, nitinol, stainless steel, and/or NbZr.
摘要:
A medical assembly includes a multi-wire lead having a plurality of coiling loops. The multi-wire lead has a gap region and a non-gap region. The gap region has adjacent coiling loops of the multi-wire lead with gaps therebetween so as to form different impedance in the gap region than impedance in the non-gap region. The non-gap region has adjacent coiling loops of the multi-wire lead with no gaps therebetween. The gaps may provide inter-loop capacitance. The multi-wire lead may have a plurality of gap regions, each gap region having a non-gap region therebetween.
摘要:
An assembly for delivering optical signals comprising a nuclear magnetic resonance system comprised of magnets, an NMR programmable logic unit, a signal input channel, and a command output channel; an optical interface assembly electrically connected to the nuclear magnetic resonance system, the optical interface assembly comprising a first laser modulated so as to produce laser optical signals, an interface optical to electrical signal convertor; and a catheter assembly connected to said optical interface assembly, the catheter assembly comprising a proximal end, a distal end, a fiber optic cable assembly, an electronics assembly disposed at the distal end comprised of a catheter electrical to optical signal convertor and a catheter optical to electrical signal convertor, and a first receiving coil disposed at the distal end.