摘要:
A system and associated method for forming three-dimensional objects under computer control and from a material which may be rendered flowable and then dispensed on a layer-by-layer basis. The layers of the material solidify or otherwise physically transform upon being dispensed thereby forming successive cross-sections. The dispensing process is repeated whereby successive layers adhere to each other thereby forming the object.
摘要:
A method for removing supports from a three-dimensional objected formed by selective deposition modeling. The three-dimensional object is formed from a curable phase change material and the supports are formed from a non-curable phase change material. The curable phase change material contains between about 5% to about 25% of a non-reactive wax in order to achieve the desired phase change characteristics of the material. When removing the supports with heat, discoloration undesirably occurs in the three-dimensional object as the non-reactive wax migrates within the object. The method prevents wax migration by cooling the object slowly past the freezing point of the build material such that a temperature differential no greater than about 5° C. is present within the object. With the preferred build material having a freezing point of about 49.5° C., this is achieved by lowering the temperature between about 62° C. to about 52° C. over a period of between about 5 to about 10 minutes so that the temperature of the regions of the object remain substantially equal as the freezing point is crossed during cooling.
摘要:
A UV curable composition useful for three-dimensional inkjet printing comprising (i) at least one UV curable urethane (meth)acrylate resin; (ii) at least one wax; (iii) at least one (meth)acrylate diluent; (iv) at least one photoinitiator; and (v) at least one polymerization inhibitor; wherein the amount of wax (ii) is sufficient to phase change the UV curable composition after jetting.
摘要:
A method and apparatus for effectively removing gas bubbles in systems fed to ink-jetting devices. The system removes both small and large-scale gas bubbles from systems that feed materials to ink jet print heads.
摘要:
A by-product waste material removal system for solid deposition modeling. As excess build and support material is removed during the build as a by-product waste the removal system accumulates, measures, and releases the by-product waste material into a waste receptacle for disposal. The by-product waste material removal system requires no mechanical vacuum systems and allows operator intervention to remove and replace waste receptacles without interrupting an ongoing build.
摘要:
A UV curable composition useful for three-dimensional inkjet printing comprising (i) at least one UV curable urethane (meth)acrylate resin; (ii) at least one wax; (iii) at least one (meth)acrylate diluent; (iv) at least one photoinitiator; and (v) at least one polymerization inhibitor; wherein the amount of wax (ii) is sufficient to phase change the UV curable composition after jetting.
摘要:
A method for removing supports from a three-dimensional objected formed by selective deposition modeling. The three-dimensional object is formed from a curable phase change material and the supports are formed from a non-curable phase change material. The curable phase change material contains between about 5% to about 25% of a non-reactive wax in order to achieve the desired phase change characteristics of the material. When removing the supports with heat, discoloration undesirably occurs in the three-dimensional object as the non-reactive wax migrates within the object. The method prevents wax migration by cooling the object slowly past the freezing point of the build material such that a temperature differential no greater than about 5° C. is present within the object. With the preferred build material having a freezing point of about 49.5° C., this is achieved by lowering the temperature between about 62° C. to about 52° C. over a period of between about 5 to about 10 minutes so that the temperature of the regions of the object remain substantially equal as the freezing point is crossed during cooling.