摘要:
A heat treatable aluminum alloy for shaped castings includes from about 3.5-5.5% Zn, from about 1-1.5% Mg, less than about 1% Si, less than about 0.30% Mn, and less than about 0.3% Fe and other incidental impurities.
摘要:
A heat treatable aluminum alloy for shaped castings includes from about 3.5-5.5% Zn, from about 1-3% Mg, about 0.05-0.5% Cu, and less than about 1% Si.
摘要:
An aluminum alloy for shaped castings, the alloy having the following composition ranges in weight percent: about 6.0-8.5% silicon, less than 0.4% magnesium, less than 0.1% cerium, less than 0.2% iron, copper in a range from about 0.1% to about 0.5% and/or zinc in a range from about 1% to about 4%, the alloy being particularly suited for T5 heat treatment.
摘要:
The present invention provides an Al—Zn—Mg—Cu casting alloy that provides high strength for automotive and aerospace applications and optimized stress corrosion cracking resistance in highly corrosive and tensile environments. The inventive alloy composition includes about 3.5 wt. % to about 5.5 wt. % Zn; about 1.0 wt. % to about 3.0 wt. % Mg; about 0.5 wt. % to about 1.2 wt. % Cu; less than about 1.0 wt. % Si; less than about 0.30 wt. % Mn; less than about 0.30 wt. % Fe; and a balance of Al and incidental impurities.
摘要:
The present invention provides an Al—Zn—Mg—Cu casting alloy that provides high strength for automotive and aerospace applications and optimized stress corrosion cracking resistance in highly corrosive and tensile environments. The inventive alloy composition includes about 3.5 wt. % to about 5.5 wt. % Zn; about 1.0 wt. % to about 3.0 wt. % Mg; about 0.5 wt. % to about 1.2 wt. % Cu; less than about 1.0 wt. % Si; less than about 0.30 wt. % Mn; less than about 0.30 wt. % Fe; and a balance of Al and incidental impurities.
摘要:
A process for selecting human cells for the production of human proteins by endogenous gene activation allows human proteins to be produced in economically feasible quantities and in a form suitable for producing a pharmaceutical composition. Also disclosed is a process for producing human proteins in a cell line identified in this matter.
摘要:
The invention concerns human cells which, due to an activation of the endogenous human EPO gene, are able to produce EPO in an adequate quantity and purity to enable a cost-effective production of human EPO as a pharmaceutical preparation. Furthermore the invention concerns a process for the production of such human EPO-producing cells, DNA constructs for the activation of the endogenous EPO gene in human cells as well as a process for the large-scale production of EPO in human cells.
摘要:
The invention relates to human cells which are capable, on the basis of an activation of the endogenous human EPO gene, of producing EPO in a sufficient amount and purity to make possible a cost-effective production of human EPO as a pharmaceutical preparation. The invention furthermore relates to a method for the preparation of such human EPO-producing cells, DNA constructs for the activation of the endogenous EPO in human cells, and a method for the large technical production of EPO in human cells.
摘要:
The invention relates to human cells which are capable, on the basis of an activation of the endogenous human EPO gene, of producing EPO in a sufficient amount and purity to make possible a cost-effective production of human EPO as a pharmaceutical preparation. The invention furthermore relates to a method for the preparation of such human EPO-producing cells, DNA constructs for the activation of the endogenous EPO inhuman cells, and a method for the large technical production of EPO in human cells.
摘要:
The invention relates to human cells which are capable, on the basis of an activation of the endogenous human EPO gene, of producing EPO in a sufficient amount and purity to make possible a cost-effective production of human EPO as a pharmaceutical preparation. The invention furthermore relates to a method for the preparation of such human EPO-producing cells, DNA constructs for the activation of the endogenous EPO in human cells, and a method for the large technical production of EPO in human cells.