摘要:
A converter for converting a DC input voltage includes two input lines receiving the DC input voltage; at least one normally off semiconductor switch which is not conductive without application of a control voltage to its gate and which is provided in one of the input lines. The converter also includes electric circuitry connected between the input lines and including at least one normally on semiconductor switch which is conductive without application of a control voltage to its gate; and a controller. In operation of the converter, the controller operates the at least one normally on semiconductor switch of the electric circuitry by temporarily applying a first control voltage to its gate; and permanently applies a second control voltage to the gate of the at least one normally off semiconductor switch in the one input line. Any normally on semiconductor switch of the electric circuitry is spatially separated and thus thermally isolated from any normally off semiconductor switch.
摘要:
An inverter has two input lines; an inverter bridge connected between the input lines and including at least one half-bridge having two normally conductive gate-controlled semiconductor switches; a controller which supplies control voltages to the gates of the semiconductor switches in an operative state of the inverter; and a DC voltage source for supplying an auxiliary control voltage to the gates of the semiconductor switches in an inoperative state of the inverter so as to hold the inverter bridge in a non-conductive state between the input lines. The DC voltage source has a charging unit connected between the input lines in series with a further normally conductive gate-controlled semiconductor switch, and charging a storage unit for electric charge, which is connected to the gate of the further semiconductor switch such that this switch becomes non-conductive, when the storage unit has been sufficiently charged for providing the auxiliary control voltage.
摘要:
A converter for converting a DC input voltage includes two input lines receiving the DC input voltage; at least one normally off semiconductor switch which is not conductive without application of a control voltage to its gate and which is provided in one of the input lines. The converter also includes electric circuitry connected between the input lines and including at least one normally on semiconductor switch which is conductive without application of a control voltage to its gate; and a controller. In operation of the converter, the controller operates the at least one normally on semiconductor switch of the electric circuitry by temporarily applying a first control voltage to its gate; and permanently applies a second control voltage to the gate of the at least one normally off semiconductor switch in the one input line. Any normally on semiconductor switch of the electric circuitry is spatially separated and thus thermally isolated from any normally off semiconductor switch.
摘要:
An inverter comprises two input lines; an inverter bridge connected between the input lines and including at least one half-bridge comprising two normally conductive gate-controlled semiconductor switches; a controller which supplies control voltages to the gates of the semiconductor switches in an operative state of the inverter; and a DC voltage source for supplying an auxiliary control voltage to the gates of the semiconductor switches in an inoperative state of the inverter so as to hold the inverter bridge in a non-conductive state between the input lines. The DC voltage source has a charging unit connected between the input lines in series with a further normally conductive gate-controlled semiconductor switch, o and charging a storage unit for electric charge, which is connected to the gate of the further semiconductor switch such that this switch becomes non-conductive, when the storage unit has been sufficiently charged for providing the auxiliary control voltage.
摘要:
On an inverter for feeding power of a direct voltage source, in particular of a photovoltaic generator (PVG), into an alternating voltage mains (N), with an asymmetrically clocked bridge circuit with at least two first switches (S1, S2) clocked at mains frequency and with at least two second switches (S3, S4) clocked at a higher clock frequency, the efficiency is intended to be improved at low cost. This is achieved in that slow speed switches (S1, S2) of equal temperature stability are utilized for the mains frequency and that fast speed switches (S3, S4) with steeper switching slopes and higher temperature stability are utilized for the higher clock frequency, the fast speed switches (S3, S4) being locally separated from the slow speed switches (S1, S2).
摘要:
An inverter (1) for feeding electric power into a utility grid (7) or into a load is described. The inverter (1) contains two direct voltage inputs (2, 3), one first intermediate circuit (8) connected thereto and comprising two series connected capacitors (C1, C2) that are connected together at a ground terminal (14), two alternating voltage outputs (5, 6) of which one at least is provided with a grid choke (L1) and one bridge section (10). In accordance with the invention, a second intermediate circuit (9) that is devised at least for selectively boosting the direct voltage and is intended for supplying the bridge section (10) with positive and negative voltage is interposed between the first intermediate circuit (8) and the bridge section (10).
摘要:
An inverter (1) for feeding electric power into a utility grid (7) or into a load is described. The inverter (1) contains two direct voltage inputs (2, 3), one first intermediate circuit (8) connected thereto and comprising two series connected capacitors (C1, C2) that are connected together at a ground terminal (14), two alternating voltage outputs (5, 6) of which one at least is provided with a grid choke (L1) and one bridge section (10). In accordance with the invention, a second intermediate circuit (9) that is devised at least for selectively boosting the direct voltage and is intended for supplying the bridge section (10) with positive and negative voltage is interposed between the first intermediate circuit (8) and the bridge section (10).
摘要:
An inverter (1) for feeding electric power into a utility grid (7) or into a load is described. The inverter (1) contains direct voltage inputs (2, 3), one first intermediate circuit (8) connected thereto and comprising two series connected capacitors (C1, C2) that are connected together at a ground terminal (14), two alternating voltage outputs (5, 6) of which one at least is provided with a grid choke (L1) and one bridge section (10). In accordance with the invention, the inverter (1) contains only two switches (S1, S2), which are disposed in the bridge section (10) and are to be switched at high frequency, as well as, between the first intermediate circuit (8) and the bridge section (10), a second intermediate circuit (9) that is devised at least for selectively boosting or bucking the direct voltage and intended for supplying said bridge section (10) with positive and negative voltage, said second intermediate circuit comprising an internal freewheeling (D5, D6) for maintaining the currents flowing through the grid choke (L1) in opposite directions.
摘要:
An inverter (1) for feeding electric power into a utility grid (7) or into a load is described. The inverter (1) contains direct voltage inputs (2, 3), one first intermediate circuit (8) connected thereto and comprising two series connected capacitors (C1, C2) that are connected together at a ground terminal (14), two alternating voltage outputs (5, 6) of which one at least is provided with a grid choke (L1) and one bridge section (10). In accordance with the invention, the inverter (1) contains only two switches (S1, S2), which are disposed in the bridge section (10) and are to be switched at high frequency, as well as, between the first intermediate circuit (8) and the bridge section (10), a second intermediate circuit (9) that is devised at least for selectively boosting or bucking the direct voltage and intended for supplying said bridge section (10) with positive and negative voltage, said second intermediate circuit comprising an internal freewheeling (D5, D6) for maintaining the currents flowing through the grid choke (L1) in opposite directions.