摘要:
Methods of forming boron-containing films are provided. The methods include introducing a boron-containing precursor into a chamber and depositing a network comprising boron-boron bonds on a substrate by thermal decomposition or a plasma process. The network may be post-treated to remove hydrogen from the network and increase the stress of the resulting boron-containing film. The boron-containing films have a stress between about −10 GPa and 10 GPa and may be used as boron source layers or as strain-inducing layers.
摘要:
Methods for forming boron-containing films are provided. The methods include introducing a boron-containing precursor and a nitrogen or oxygen-containing precursor into a chamber and forming a boron nitride or boron oxide film on a substrate in the chamber. In one aspect, the method includes depositing a boron-containing film and then exposing the boron-containing film to the nitrogen-containing or oxygen-containing precursor to incorporate nitrogen or oxygen into the film. The deposition of the boron-containing film and exposure of the film to the precursor may be performed for multiple cycles to obtain a desired thickness of the film. In another aspect, the method includes reacting the boron-containing precursor and the nitrogen-containing or oxygen-containing precursor to chemically vapor deposit the boron nitride or boron oxide film.
摘要:
Methods of forming boron-containing films are provided. The methods include introducing a boron-containing precursor into a chamber and depositing a network comprising boron-boron bonds on a substrate by thermal decomposition or a plasma process. The network may be post-treated to remove hydrogen from the network and increase the stress of the resulting boron-containing film. The boron-containing films have a stress between about −10 GPa and 10 GPa and may be used as boron source layers or as strain-inducing layers.
摘要:
Methods for forming boron-containing films are provided. The methods include introducing a boron-containing precursor and a nitrogen or oxygen-containing precursor into a chamber and forming a boron nitride or boron oxide film on a substrate in the chamber. In one aspect, the method includes depositing a boron-containing film and then exposing the boron-containing film to the nitrogen-containing or oxygen-containing precursor to incorporate nitrogen or oxygen into the film. The deposition of the boron-containing film and exposure of the film to the precursor may be performed for multiple cycles to obtain a desired thickness of the film. In another aspect, the method includes reacting the boron-containing precursor and the nitrogen-containing or oxygen-containing precursor to chemically vapor deposit the boron nitride or boron oxide film.
摘要:
This invention enables high temperature superconducting (HTS) metal oxide materials ReBa2Cu3Ox ((RE)BCO) to carry high superconducting currents at high current densities under high magnetic field (≧3 Tesla), in all orientations of the field, and at high temperatures (65 Kelvin). The superconductor is adapted to carry current in a superconducting state, with the superconductor having a current (I) carrying capacity of at least 250 A/cm width, in a field of 3 Tesla (T), at 65 Kelvin (K), at all angles relative to the coated conductor. More preferably, the current carrying capacity extends through the range of substantially 250 A/cm to 500 A/cm. Excellent performance is achieved by use of intrinsic pinning centers in the HTS compound. The invention preferably does not require the addition of extra elements or compounds or particles to the superconducting compound during synthesis, nor does it require extra process steps.
摘要:
The present memory device includes a substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric. A method for fabricating such a memory device is also provided, including various approaches for forming the silicon oxynitride.
摘要:
The present memory device includes a substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric. A method for fabricating such a memory device is also provided, including various approaches for forming the silicon oxynitride.