摘要:
In one embodiment, a fluid ejection device comprises a substrate having a fluid slot defined from a first surface through to a second opposite surface; an ejection element formed over the first surface and that ejects fluid therefrom; and a filter having feed holes positioned over the fluid slot near the first surface. Fluid moves from the second surface through the feed holes to the ejection element. In a particular embodiment, the filter is formed of a first material that is surrounded by a second material. In another particular embodiment, the filter is formed from the back side and is formed of the same material as the substrate.
摘要:
An ink-jet printhead fabrication process and product that uses selectivity rate controlled etch techniques to produce trenches on the frontside of a silicon substrate to define ink feed channels and resistor support regions. Location and size of features is made independent of etch rate by providing a selective etch for the silicon trench etch steps that is greater than 10,000:1 for the silicon:oxide that defines ink feed channels and resistor support areas.
摘要:
A through-substrate etching process is monitored by providing a sacrificial electrode in proximity to a desired etch window on the substrate. An etch process is performed on the substrate. The etch process is monitored by measuring an electrical property of either the substrate or the sacrificial electrode or both.
摘要:
An apparatus includes micro-electromechanical (MEM) devices, a charge source, and a discharge mechanism. Each MEM device has different states based on a charged induced thereon. The charge source is to induce the charge thereon such that the MEM devices each enter one of the different states thereof. The discharge mechanism for the MEM devices is to discharge the induced thereon. The discharge mechanism includes one of a resistor for each MEM device and an ultraviolet (UV) light source. The resistor is to discharge the charge on its MEM device to ground. The UV light source is to emit photons onto the MEM devices, such that the photons discharge the charge on the MEM devices via photoelectric effect.
摘要:
Methods and apparatus for determining the extent of etching in material by locating a detector element adjacent to a portion of the material that is to be etched. The width of the element varies. The resistance of the element is measured upon etching the portion.
摘要:
In an embodiment, a method of fabricating a fluid ejection device includes forming a resistor on the front side of a substrate, depositing a dielectric film on the resistor to protect the resistor from chemical exposure during a slot formation process, and forming a slot in the substrate that extends from the back side to the front side of the substrate.
摘要:
The described embodiments relate to fluid-ejection devices and methods of forming same. One exemplary embodiment includes a plurality of fluid drop generators and associated electrically conductive paths, and at least one electron beam generation assembly configured to selectively direct at least one electron beam at individual electrically conductive paths sufficiently to cause fluid to be ejected from an associated fluid drop generator.
摘要:
In an embodiment, a method of fabricating a fluid ejection device includes forming a resistor on the front side of a substrate, depositing a dielectric film on the resistor to protect the resistor from chemical exposure during a slot formation process, and forming a slot in the substrate that extends from the back side to the front side of the substrate.
摘要:
Methods and apparatus for determining the extent of etching in material by locating a detector element adjacent to a portion of the material that is to be etched. The width of the element varies. The resistance of the element is measured upon etching the portion.
摘要:
An apparatus includes micro-electromechanical (MEM) devices, a charge source, and a discharge mechanism. Each MEM device has different states based on a charged induced thereon. The charge source is to induce the charge thereon such that the MEM devices each enter one of the different states thereof. The discharge mechanism for the MEM devices is to discharge the induced thereon. The discharge mechanism includes one of a resistor for each MEM device and an ultraviolet (UV) light source. The resistor is to discharge the charge on its MEM device to ground. The UV light source is to emit photons onto the MEM devices, such that the photons discharge the charge on the MEM devices via photoelectric effect.