摘要:
Organic circuit elements and organic conductors are disclosed, together with electron acceptors and donors that may be chemically modified to alter the conductivity of the circuit or organic conductor. An organic circuit element includes a plurality of members, each of which includes an oligonucleotide duplex. The plurality of members includes at least one donor member for receiving conduction electrons from an electron donor, at least one acceptor member for communicating with an electron acceptor to provide a region of attraction for the conduction electrons, and at least one regulator member intersecting with at least one of the plurality of members to define at least one electric field regulation junction, for cooperating with an electric field regulator to regulate an electric field at the junction. A method of regulating an electronic signal between first and second locations in a conductive nucleic acid material includes chemically modifying an electron acceptor or an electron donor that is coupled to the conductive nucleic acid material.
摘要:
In various aspects, the invention provides molecular systems for storing and retrieving information. In some embodiments, polymers capable of selectively binding metal ions, such as nucleic acids, are used to record information in the form of a particular molecular conformation. Electrochemical assay methods employing nanopores may be used to read and write information using such polymeric media. In some embodiments, information may be recorded in a nucleic acid polymer by magnetically modulating the translocation of the nucleic acid through a channel in a medium, while simultaneously modulating the electrostatic potential across the channel. In this way, the incorporation of a divalent metal ion in the nucleic acid duplex may be modulated to store information. In an alternative aspect, the invention provides analogous processes for detecting a base pair mismatch in a nucleic acid polymer.
摘要:
The invention provides systems having an electron transfer moiety tethered to an electrode by a conductive spacer moiety. A biasing potential applied to the electrode reduces the electron transfer moiety to form a reduced electron transfer species capable of absorbing a photon, to form an excited electron transfer species. An electron accepting moiety accepts an electron from the excited electron transfer species, to form a reduced electron acceptor. The reduced electron acceptor may for example be used in hydrogen generation reactions.
摘要:
In one aspect, the invention provides methods and apparatus for detecting a protein binding to a nucleic acid by measuring the impedence of a nucleic acid layer on an electrode, for example by AC impedance spectroscopy. In one embodiment, such methods may for example be used to detect a mismatch in a nucleic acid duplex.
摘要:
An electrochemical method of identifying the presence of a target protein in a sample is provided. The method comprises providing a redox probe modified to include a detector that is suitable to bind to the target protein, and exposing the sample to the detector-modified redox probe. A change in the electrochemical signal produced by the redox probe as compared to a control signal is indicative of the presence of the target protein.
摘要:
A nucleotide triphosphate (NTP) participates in a phosphorylation reaction, wherein a phosphate group is transferred from the NTP to a substrate by a kinase. Provision in a kinase reaction of a NTP whose gamma phosphate is conjugated to an electroactive label results in the transfer of the gamma phosphate-electroactive label conjugate from the NTP to the substrate. The electroactive label is an organic moiety such as a quinone or a nitroheterocycle, or is a metallocene such as a ferrocene or a cobaltocene. Upon transfer of the gamma phosphate-electroactive label conjugate to an electrode-bound substrate by a kinase, the phosphorylation event is detected electrochemically by cyclic voltammetry. Phosphorylation can also be detected by mass spectrometry of a substrate carrying the electroactive label-conjugated gamma phosphate. NTP comprising the gamma phosphate-electroactive label conjugate is used in methods of detecting the presence of a kinase in a sample, screening candidate compounds that modulate kinase activity, and in methods of diagnosing a disease associated with a kinase.