摘要:
The invention relates to a container for containing a living organism, a docking station for docking the container, and a transportation system comprising the container and the docking station. The container comprises a docking for docking the container to a docking station. The docking station comprises a light emitter. The container comprises light-guiding means for guiding at least part of the light emitted by the light emitter to the living organism. The effect of the measures according to the invention is that the light required for illuminating the living organism is generated by the light emitter of the docking station. As a result, no light emitters are necessary in the container according to the invention which reduces the cost of the container.
摘要:
The invention relates to a container (10) for containing a living organism (5), a docking station (100) for docking the container, and a transportation system (200) comprising the container and the docking station. The container comprises docking means (40, 42) for docking the container to a docking station. The docking station comprises a light emitter (110). The container comprises light-guiding means (30, 32, 34, 36) for guiding at least part of the light emitted by the light emitter to the living organism. The effect of the measures according to the invention is that the light required for illuminating the living organism is generated by the light emitter of the docking station. As a result, no light emitters are necessary in the container according to the invention which reduces the cost of the container.
摘要:
A lighting device, such as a replacement lighting device, comprising a light source (LS), e.g. LEDs, for producing light along an optical axis (OA). A heat sink (HS) made of a material with an electrical resistivity being less than 0.01 Ωm, e.g. a metallic heat sink being a part of the housing, transports heat away from the light source (LS). A Radio Frequency (RF) communication circuit (CC) connected to an an antenna (A) serves to enable RF signal communication, e.g. to control the device via a remote control. Metallic components, including the heat sink (HS), having an extension larger than 1/10 of a wavelength of the RF signal are arranged below a virtual plane (VP) drawn orthogonal to the optical axis (OA) and going through the antenna (A). Hereby a compact device can be obtained, and still a satisfying RF radiation pattern can be obtained. The antenna can be a wire antenna or a PCB antenna, e.g. a PIFA or a IFA type antenna. In a special embodiment the antenna is formed on a ring-shaped PCB with a central hole allowing passage of light from the light source. Preferably, the antenna is positioned at least 2 mm in front of the heat sink (HS).
摘要:
A current correction circuit (200) has an input (201) and comprises: −a first controllable current source (220) having an input connected to the circuit input for drawing a first current (I 220) from said circuit input; —a differentiator (210) having an input coupled to the circuit input and having an output coupled to the first current source; and/or—a second controllable current source (240) having an input connected to the circuit input for drawing a second current (I 240) from said circuit input; —a voltage comparator (230) having a first input coupled to the circuit input (201), having a second input coupled to receive a reference signal (Vref), and having an output coupled to the second current source. The circuit is responsive to voltage changes by drawing first current pulses (221) from said circuit input, and/or to low voltages by drawing second current pulses (241) from said circuit input.
摘要:
A self-oscillating switch circuit is configured for use in a switching DC-DC converter (switched mode power supply (SMPS)). The self-oscillating switch circuit comprises an input terminal (Tin1, Tin2) for receiving power from a power supply (51) and an output terminal (Tont1, Tont2) for supplying power to a load. The load may be a high-power LED, for example. The self-oscillating switch circuit further comprises a power switch semi-> conductor device (Q1) having a control terminal and a control semi-conductor device (Q2) coupled to the power switch semi-conductor device. The power switch semi-conductor device is configured for controlling a load current between the input terminal and the output terminal and the control semi-conductor device is configured for supplying a control signal to the control terminal of the power switch semi-conductor device for controlling switching of the power switch semi-conductor device. In order to reduce a power loss in the power switch semi-conductor device, a gain semi-conductor device (Q4) is coupled between the power switch semi-conductor device and the control semi-conductor device for amplifying the control signal. Due to the amplification of the control signal, switching of the power switch semi-conductor device is performed faster, thereby reducing power dissipation due to a load current flowing through the power switch semi-conductor device, while the base-emitter voltage of the power switch transistor is below a base emitter voltage corresponding to the peak current at that time.
摘要:
MRI apparatus with a magnet assembly for generating a uniform magnetic field in a measuring volume, wherein a combination of at least two magnetic coils is arranged adjacent an object to be examined in order to detect the radio frequency radiation emanating from the object. The combination may include, for example one birdcage coil (40) and one surface coil (45). The coils are arranged relative to one another and to the magnetic field in such a manner that their areas of sensitivity overlap and that their longitudinal conductors (42 and 47, respectively) extend parallel to the uniform magnetic field B0 and one in the prolongation of the other. It is demonstrated that the difference between the signal-to-noise ratios of the coils causes image degradation due to the disruption (51) of the sensitivity of the coil assembly in the zone between the coils. According to the invention, the end of the longitudinal conductor (49) of the coil having the highest signal-to-noise ratio (45) is bent away from its original plane, in the direction away from the object to be examined, in order to reduce the sensitivity disruption (51) of the coil assembly.
摘要:
A lighting device, such as a replacement lighting device, comprising a light source (LS), e.g. LEDs, for producing light along an optical axis (OA). A heat sink (HS) made of a material with an electrical resistivity being less than 0.01 Ωm, e.g. a metallic heat sink being a part of the housing, transports heat away from the light source (LS). A Radio Frequency (RF) communication circuit (CC) connected to an antenna (A) serves to enable RF signal communication, e.g. to control the device via a remote control. Metallic components, including the heat sink (HS), having an extension larger than 1/10 of a wavelength of the RF signal are arranged below a virtual plane (VP) drawn orthogonal to the optical axis (OA) and going through the antenna (A). Hereby a compact device can be obtained, and still a satisfying RF radiation pattern can be obtained. The antenna can be a wire antenna or a PCB antenna, e.g. a PIFA or a IFA type antenna. In a special embodiment the antenna is formed on a ring-shaped PCB with a central hole allowing passage of light from the light source. Preferably, the antenna is positioned at least 2 mm in front of the heat sink (HS).
摘要:
A power supply circuit has an LLC converter stage for converting a DC voltage input into a DC voltage output, and at least one hysteretic converter stage. Each hysteretic converter stage has a DC voltage input coupled to the DC voltage output of the LLC converter stage, and a DC current output. The LLC converter stage lacks a feedback control, and is operated at its load independent point. A ripple on the DC voltage output of the LLC converter does not affect the output current of the hysteretic converter stage. The stable DC current output of the hysteretic converter stage is coupled to a load having one or more LED strings.
摘要:
A self-oscillating switch circuit is configured for use in a switching DC-DC converter (switched mode power supply (SMPS)). The self-oscillating switch circuit comprises an input terminal (Tin1, Tin2) for receiving power from a power supply (51) and an output terminal (Tont1, Tont2) for supplying power to a load. The load may be a high-power LED, for example. The self-oscillating switch circuit further comprises a power switch semi-> conductor device (Q1) having a control terminal and a control semi-conductor device (Q2) coupled to the power switch semi-conductor device. The power switch semi-conductor device is configured for controlling a load current between the input terminal and the output terminal and the control semi-conductor device is configured for supplying a control signal to the control terminal of the power switch semi-conductor device for controlling switching of the power switch semi-conductor device. In order to reduce a power loss in the power switch semi-conductor device, a gain semi-conductor device (Q4) is coupled between the power switch semi-conductor device and the control semi-conductor device for amplifying the control signal. Due to the amplification of the control signal, switching of the power switch semi-conductor device is performed faster, thereby reducing power dissipation due to a load current flowing through the power switch semi-conductor device, while the base-emitter voltage of the power switch transistor is below a base emitter voltage corresponding to the peak current at that time.
摘要:
Disclosed is an outage detection circuit for detecting a defective light source, such as a LED coupled to a DC-DC converter circuit for receiving a power signal. The outage detection circuit includes a top voltage detector coupled to the LED for detecting a voltage across the LED. The top voltage detector has a top voltage terminal for supplying a top voltage signal. The detection circuit further includes a differential amplifier coupled to the top voltage terminal for receiving the top voltage signal as a first input signal and coupled to a reference voltage terminal. The reference voltage terminal is configured to supply a reference voltage as a second input signal. The differential amplifier includes an output terminal for supplying an outage detection signal.