摘要:
Methods, systems, and media for segmenting images are provided. In some embodiments, the method comprises: generating an aggregate U-Net comprised of a plurality of U-Nets, wherein each U-Net in the plurality of U-Nets has a different depth, wherein each U-Net is comprised of a plurality of nodes Xi,j, wherein i indicates a down-sampling layer the U-Net, and wherein j indicates a convolution layer of the U-Net; training the aggregate U-Net by: for each training sample in a group of training samples, calculating, for each node in the plurality of nodes Xi,j, a feature map xi,j, wherein xi,j is based on a convolution operation performed on a down-sampling of an output from Xi−1,j when j=0, and wherein xi,j is based on a convolution operation performed on an up-sampling operation of an output from Xi+1,j−1 when j>0; and predicting a segmentation of a test image using the trained aggregate U-Net.
摘要:
Systems, methods, and media for on-line boosting of a classifier are provided, comprising: receiving a training sample; for each of a plurality of features, determining a feature value for the training sample and the feature, using the feature value to update a histogram, and determining a threshold for a classifier of the feature; for each of the plurality of features, classifying the training sample using the threshold for the classifier of the feature and calculating an error associated with the classifier; selecting a plurality of best classifiers from the classifiers; and, for each of the plurality of best classifiers, assigning a voting weight to the one of the plurality of best classifiers.
摘要:
A system and method is provided for automated polyp detection in optical colonoscopy images. The system includes an input configured to acquire a series of optical images, and a processor configured to process the optical images. Processing steps include performing a boundary classification with steps comprising locating a series of edge pixels using at least one acquired optical image, selecting an image patch around each said edge pixel, performing a classification threshold analysis on each image patch of said edge pixels using a set of determined boundary classifiers, and identifying, based on the classification threshold analysis, polyp edge pixels consistent with a polyp edge. Processing steps for the processor also include performing a vote accumulation, using the identified polyp edge pixels, to determine a polyp location. The system also includes an output configured to indicate potential polyps using the determined polyp location.
摘要:
A system and method for detecting pulmonary embolisms in a subject's vasculature are provided. In some aspects, the method includes acquiring a set of images representing a vasculature of the subject, and analyzing the set of images to identify pulmonary embolism candidates associated with the vasculature. The method also includes generating, for identified pulmonary embolism candidates, image patches based on a vessel-aligned image representation, and applying a set of convolutional neural networks to the generated image patches to identify pulmonary embolisms. The method further includes generating a report indicating identified pulmonary embolisms.
摘要:
A system for automatically determining a thickness of a wall of an artery of a subject includes an ECG monitoring device that captures an electrocardiogram (ECG) signal from the subject, and an ultrasound video imaging device, coupled to the ECG monitoring device, that receives the ECG signal from the ECG monitoring device, and captures a corresponding ultrasound video of the wall of the artery of the subject. The system produces a plurality of frames of video comprising the ultrasound video of the wall of the artery of the subject and an image of the ECG signal. A processor is configured to select a subset of the plurality of frames of the ultrasound video based on the image of the (ECG) signal, locate automatically a region of interest (ROI) in each frame of the subset of the plurality of frames of the video using a machine-based artificial neural network and measure automatically a thickness of the wall of the artery in each ROI using the machine-based artificial neural network.
摘要:
A system and method for detecting pulmonary embolisms in a subject's vasculature are provided. In some aspects, the method includes acquiring a set of images representing a vasculature of the subject, and analyzing the set of images to identify pulmonary embolism candidates associated with the vasculature. The method also includes generating, for identified pulmonary embolism candidates, image patches based on a vessel-aligned image representation, and applying a set of convolutional neural networks to the generated image patches to identify pulmonary embolisms. The method further includes generating a report indicating identified pulmonary embolisms.
摘要:
Mechanisms for simultaneously monitoring colonoscopic video quality and detecting polyps in colonoscopy are provided. In some embodiments, the mechanisms can include a quality monitoring system that uses a first trained classifier to monitor image frames from a colonoscopic video to determine which image frames are informative frames and which image frames are non-informative frames. The informative image frames can be passed to an automatic polyp detection system that uses a second trained classifier to localize and identify whether a polyp or any other suitable object is present in one or more of the informative image frames.
摘要:
Described herein are means for generating source models for transfer learning to application specific models used in the processing of medical imaging. In some embodiments, the method comprises: identifying a group of training samples, wherein each training sample in the group of training samples includes an image; for each training sample in the group of training samples: identifying an original patch of the image corresponding to the training sample; identifying one or more transformations to be applied to the original patch; generating a transformed patch by applying the one or more transformations to the identified patch; and training an encoder-decoder network using a group of transformed patches corresponding to the group of training samples, wherein the encoder-decoder network is trained to generate an approximation of the original patch from a corresponding transformed patch, and wherein the encoder-decoder network is trained to minimize a loss function that indicates a difference between the generated approximation of the original patch and the original patch. The source models significantly enhance the transfer learning performance for many medical imaging tasks including, but not limited to, disease/organ detection, classification, and segmentation. Other related embodiments are disclosed.
摘要:
Mechanisms for simultaneously monitoring colonoscopic video quality and detecting polyps in colonoscopy are provided. In some embodiments, the mechanisms can include a quality monitoring system that uses a first trained classifier to monitor image frames from a colonoscopic video to determine which image frames are informative frames and which image frames are non-informative frames. The informative image frames can be passed to an automatic polyp detection system that uses a second trained classifier to localize and identify whether a polyp or any other suitable object is present in one or more of the informative image frames.
摘要:
A system and method is provided for automated polyp detection in optical colonoscopy images. The system includes an input configured to acquire a series of optical images, and a processor configured to process the optical images. Processing steps include performing a boundary classification with steps comprising locating a series of edge pixels using at least one acquired optical image, selecting an image patch around each said edge pixel, performing a classification threshold analysis on each image patch of said edge pixels using a set of determined boundary classifiers, and identifying, based on the classification threshold analysis, polyp edge pixels consistent with a polyp edge. Processing steps for the processor also include performing a vote accumulation, using the identified polyp edge pixels, to determine a polyp location. The system also includes an output configured to indicate potential polyps using the determined polyp location.