METHODS, SYSTEMS, AND MEDIA FOR SEGMENTING IMAGES

    公开(公告)号:US20200380695A1

    公开(公告)日:2020-12-03

    申请号:US16885579

    申请日:2020-05-28

    IPC分类号: G06T7/143 G06T7/00

    摘要: Methods, systems, and media for segmenting images are provided. In some embodiments, the method comprises: generating an aggregate U-Net comprised of a plurality of U-Nets, wherein each U-Net in the plurality of U-Nets has a different depth, wherein each U-Net is comprised of a plurality of nodes Xi,j, wherein i indicates a down-sampling layer the U-Net, and wherein j indicates a convolution layer of the U-Net; training the aggregate U-Net by: for each training sample in a group of training samples, calculating, for each node in the plurality of nodes Xi,j, a feature map xi,j, wherein xi,j is based on a convolution operation performed on a down-sampling of an output from Xi−1,j when j=0, and wherein xi,j is based on a convolution operation performed on an up-sampling operation of an output from Xi+1,j−1 when j>0; and predicting a segmentation of a test image using the trained aggregate U-Net.

    SYSTEMS, METHODS, AND MEDIA FOR ON-LINE BOOSTING OF A CLASSIFIER
    2.
    发明申请
    SYSTEMS, METHODS, AND MEDIA FOR ON-LINE BOOSTING OF A CLASSIFIER 有权
    用于分类器的在线升压的系统,方法和媒体

    公开(公告)号:US20130070997A1

    公开(公告)日:2013-03-21

    申请号:US13621837

    申请日:2012-09-17

    IPC分类号: G06K9/62

    CPC分类号: G06K9/62

    摘要: Systems, methods, and media for on-line boosting of a classifier are provided, comprising: receiving a training sample; for each of a plurality of features, determining a feature value for the training sample and the feature, using the feature value to update a histogram, and determining a threshold for a classifier of the feature; for each of the plurality of features, classifying the training sample using the threshold for the classifier of the feature and calculating an error associated with the classifier; selecting a plurality of best classifiers from the classifiers; and, for each of the plurality of best classifiers, assigning a voting weight to the one of the plurality of best classifiers.

    摘要翻译: 提供了用于在线升压分类器的系统,方法和介质,包括:接收训练样本; 对于多个特征中的每一个,确定所述训练样本和所述特征的特征值,使用所述特征值来更新直方图,以及确定所述特征的分类器的阈值; 对于所述多个特征中的每一个,使用所述特征的分类器的阈值对所述训练样本进行分类,并计算与所述分类器相关联的错误; 从分类器中选择多个最佳分类器; 并且对于所述多个最佳分类器中的每一个,为所述多个最佳分类器之一分配投票权重。

    SYSTEM AND METHOD FOR BOUNDARY CLASSIFICATION AND AUTOMATIC POLYP DETECTION
    10.
    发明申请
    SYSTEM AND METHOD FOR BOUNDARY CLASSIFICATION AND AUTOMATIC POLYP DETECTION 有权
    用于边界分类和自动聚合检测的系统和方法

    公开(公告)号:US20160217573A1

    公开(公告)日:2016-07-28

    申请号:US14914896

    申请日:2014-08-28

    IPC分类号: G06T7/00 A61B1/31 G06T5/20

    摘要: A system and method is provided for automated polyp detection in optical colonoscopy images. The system includes an input configured to acquire a series of optical images, and a processor configured to process the optical images. Processing steps include performing a boundary classification with steps comprising locating a series of edge pixels using at least one acquired optical image, selecting an image patch around each said edge pixel, performing a classification threshold analysis on each image patch of said edge pixels using a set of determined boundary classifiers, and identifying, based on the classification threshold analysis, polyp edge pixels consistent with a polyp edge. Processing steps for the processor also include performing a vote accumulation, using the identified polyp edge pixels, to determine a polyp location. The system also includes an output configured to indicate potential polyps using the determined polyp location.

    摘要翻译: 提供了一种用于光学结肠镜检查图像中的自动息肉检测的系统和方法。 该系统包括被配置为获取一系列光学图像的输入端和配置成处理光学图像的处理器。 处理步骤包括执行边界分类,步骤包括使用至少一个获取的光学图像来定位一系列边缘像素,在每个所述边缘像素周围选择一个图像块,使用集合对所述边缘像素的每个图像块执行分类阈值分析 确定边界分类器,并根据分类阈值分析识别与息肉边缘一致的息肉边缘像素。 处理器的处理步骤还包括使用所识别的息肉边缘像素执行投票积累以确定息肉位置。 该系统还包括被配置为使用所确定的息肉位置来指示潜在的息肉的输出。