摘要:
An antimicrobial exfoliated vermiculite composite material is synthesized by impregnating the interlayers of exfoliated vermiculite through cation exchange and surface absorption with at least one of the following metal species: copper, silver, zinc, and manganese. Alternately, the antimicrobial material is synthesized by impregnating interlayers of unexfoliated vermiculite with said metal species and exfoliating the product thereafter. The metal species can be in ionic state, nanometer particles, and in the form of metal oxides, metal hydroxides, metal nitrides, metal carbides, metal phosphates, metal silicates, metal borides, metal sulfides, metal halides, metal hydrides, metal nitrates, metal carbonates, and metal sulfadiazines. Any mixture of these metal species in the exfoliated vermiculite can provide protection against a broad spectrum of pathogens. This antimicrobial material in any desired form, in whole or as an additive, can effectively self-decontaminate various materials or products as the antimicrobial metal ions slowly diffuse to the surface of the products.
摘要:
A method of treating spent sorbent from power plants containing materials including mercury absorbed from emission gases comprising putting said spent sorbent in an atmosphere isolated container or furnace chamber and heating said sorbent by microwave, radio frequency and/or infrared irradiation. The sorbent is heated to a temperature of at least the boiling point of the major contaminant, including mercury. No air or purge gas is added except to maintain safe pressure conditions, to control combustion of the sorbent and increase efficiency. The resulting vapor is released through an exhaust port of the chamber that leads to a condenser where mercury is condensed and separated. Other residual vapors are led to a scrubber for further cleansing and may be returned to the power plant for other applications. The hot treated sorbent is cooled down prior to contacting with air for later reuse in the power plant.
摘要:
A method for the direct preparation of metal from metal containing ore by applying microwaves, alone or in combination with other heating means, to extract metal from masses made by forming a powder of ore and an optional reducing agent. The method minimizes the expenditure of energy used to refine the metal, the level of contamination introduced into the metal, and the production of environmental pollutants.
摘要:
A froth flotation method is provided for removing carbon from fly ash which utilizes an environmental friendly conditioning agent. The conditioning agent preferably comprises a biodegradable oil which is added to a slurry containing raw fly ash and water. The conditioning agent renders the carbon in the fly ash hydrophobic such that upon aeration of the slurry, air bubbles attach to the carbon particles and carry them to the surface of the slurry in the form of a froth, such that the carbon may be removed.
摘要:
A method and apparatus for reducing iron oxides using microwave heating in a furnace chamber which is sealed against the entrance of air reduces the energy required and produces a low temperature reduction and allows the recovery of combustible synthetic gas as a byproduct of the process. Avoidance of the reduction of sulfur, phosphorus and silica is also insured, as is the need to reduce the silica content of the feed material prior to reducing the ore. A continuous rotary hearth furnace, a rotary kiln, a linear conveyor and vertical shaft furnace chamber configurations are described. A secondary heating zone can also be included to process the reduced iron into iron nuggets or liquid metallic iron.
摘要:
Mercury emission from a flue gas such as that generated by a coal fired power plant is controlled by injecting into the flue gas unburned carbon purified from ash such as fly ash or wood ash. The unburned carbon adsorbs the mercury and is later removed from the flue gas by a particle separator. The unburned carbon collected from ash is significantly lower in cost compared to activated carbon presently used in such a process. The unburned carbon is concentrated in the sorbent by one or more separation processes used to remove non-carbon particles from the fly ash. These processes include gravity separation, electrostatic separation, froth flotation, magnetic separation and size classification. Mercury adsorption is further increased by oxidation of the carbon surface.
摘要:
The froth flotation apparatus includes a gas bubble-particle contact unit including a mixing structure for breaking a gas into fine bubbles,such as a packed tower packing or mechanical agitator, and a separate phase separation unit. A conditioned aqueous pulp containing a mixture of hydrophobic and hydrophilic particles and a substantially inert gas, such as air, are introduced into and combined in one end of the contact unit and subsequently flow concurrently through the mixing structure, such that the gas is broken into fine bubbles which intimately contact and become attached to the hydrophobic particles. The resulting gas bubble-particle mixture is introduced into the phase separation unit which is operated under substantially quiescent conditions. A concentrate fraction containing primarily hydrophobic particles and a tailing containing primarily hydrophilic particles are discharged from the upper and lower portions of the phase separation unit, respectively. In one embodiment, the phase separation unit comprises a vertical column including one or more slowly rotating paddles in the froth zone to produce a froth having a substantially uniform buoyancy. In another embodiment, the phase separation unit comprises an elongated, generally horizontal tank and includes a skimming assembly for moving froth toward the concentrate fraction outlet.
摘要:
A wet process for the beneficiation of a fly ash by-product has the following steps: a) forming a slurry mixture of a fly ash material and a liquid; b) gravitationally separating and collecting a first material fraction of the fly ash having a density less than the liquid by skimming off floating slurry material; c) separating a first magnetic fraction from the slurry by subjecting the slurry to a magnetic field of from about 300 gauss to about 10 kilogauss; d) separating the unburned carbon from the remaining slurry components by adding an effective amount of an oil having a carbon chain greater than octane, and a frothing agent whereby the oil coats the unburned carbon forming hydrophobic carbon materials and inducing air into the system for frothing the slurry mixture wherein the hydrophobic unburned carbon froths to the surface and is removed by skimming off the frothing layer; and e) collecting the remaining fraction of silicate spheres and silicates.
摘要:
A wet process for the beneficiation of a fly ash by-product has the following steps: a) forming a slurry mixture of a fly ash material and a liquid; b) gravitationally separating and collecting a first material fraction of the fly ash having a density less than the liquid by skimming off floating slurry material; c) separating a first magnetic fraction from the slurry by subjecting the slurry to a magnetic field of from about 300 gauss to about 10 kilogauss; d) separating the unburned carbon from the remaining slurry components by adding an effective amount of an oil having a carbon chain greater than octane, and a frothing agent whereby the oil coats the unburned carbon forming hydrophobic carbon materials and inducing air into the system for frothing the slurry mixture wherein the hydrophobic unburned carbon froths to the surface and is removed by skimming off the frothing layer; and e) collecting the remaining fraction of silicate spheres and silicates.
摘要:
An antimicrobial exfoliated vermiculite composite material is synthesized by impregnating the interlayers of exfoliated vermiculite through cation exchange and surface absorption with at least one of the following metal species: copper, silver, zinc, and manganese. Alternately, the antimicrobial material is synthesized by impregnating interlayers of unexfoliated vermiculite with said metal species and exfoliating the product thereafter. The metal species can be in ionic state, nanometer particles, and in the form of metal oxides, metal hydroxides, metal nitrides, metal carbides, metal phosphates, metal silicates, metal borides, metal sulfides, metal halides, metal hydrides, metal nitrates, metal carbonates, and metal sulfadiazines. Any mixture of these metal species in the exfoliated vermiculite can provide protection against a broad spectrum of pathogens. This antimicrobial material in any desired form, in whole or as an additive, can effectively self-decontaminate various materials or products as the antimicrobial metal ions slowly diffuse to the surface of the products.