摘要:
The invention provides a semiconductor device and a lateral diffused metal-oxide-semiconductor transistor. The semiconductor device includes a substrate having a first conductive type. A gate is disposed on the substrate. A source doped region is formed in the substrate, neighboring with a first side of the gate, wherein the source doped region has a second conductive type different from the first conductive type. A drain doped region is formed in the substrate, neighboring with a second side opposite to the first side of the gate. The drain doped region is constructed by a plurality of first doped regions with the first conductive type and a plurality of second doped regions with the second conductive type, wherein the first doped regions and the second doped regions are alternatively arranged.
摘要:
The invention provides a semiconductor device and a lateral diffused metal-oxide-semiconductor transistor. The semiconductor device includes a substrate having a first conductive type. A gate is disposed on the substrate. A source doped region is formed in the substrate, neighboring with a first side of the gate, wherein the source doped region has a second conductive type different from the first conductive type. A drain doped region is formed in the substrate, neighboring with a second side opposite to the first side of the gate. The drain doped region is constructed by a plurality of first doped regions with the first conductive type and a plurality of second doped regions with the second conductive type, wherein the first doped regions and the second doped regions are alternatively arranged.
摘要:
A method for fabricating a semiconductor device is provided. A method for fabricating a semiconductor device includes providing a semiconductor substrate having a first conductive type. An epitaxy layer having the first conductive type is formed on the semiconductor substrate. First trenches are formed in the epitaxy layer. First insulating liner layers are formed on sidewalls and bottoms of the first trenches. A first dopant having the first conductive type dopes the epitaxy layer from the sidewalls of the first trenches to form first doped regions. A first insulating material is filled into the first trenches. Second trenches are formed in the epitaxy layer. Second insulating liner layers are formed on sidewalls and bottoms of the second trenches. A second dopant having a second conductive type dopes the epitaxy layer from the sidewalls of the second trenches to form second doped regions.
摘要:
The invention provides a semiconductor device. A buried layer is formed in a substrate. A first deep trench contact structure is formed in the substrate. The first deep trench contact structure comprises a conductor and a liner layer formed on a sidewall of the conductor. A bottom surface of the first deep trench contact structure is in contact with the buried layer.
摘要:
A method for fabrication of a semiconductor device is provided. A first type doped body region is formed in a first type substrate. A first type heavily-doped region is formed in the first type doped body region. A second type well region and second type bar regions are formed in the first type substrate with the second type bar regions between the second type well region and the first type doped body region. The first type doped body region, the second type well region, and each of the second type bar regions are separated from each other by the first type substrate. The second type bar regions are inter-diffused to form a second type continuous region adjoining the second type well region. A second type heavily-doped region is formed in the second type well region.
摘要:
A semiconductor device is provided. The semiconductor device includes a substrate having a first doping region and an overlying second doping region, wherein the first and second doping regions have a first conductivity type and wherein the second doping region has at least one first trench and at least one second trench adjacent thereto. A first epitaxial layer is disposed in the first trench and has a second conductivity type. A second epitaxial layer is disposed in the second trench and has the first conductivity type, wherein the second epitaxial layer has a doping concentration greater than that of the second doping region and less than that of the first doping region. A gate structure is disposed on the second trench. A method of fabricating a semiconductor device is also disclosed.
摘要:
A semiconductor structure is provided. A second conductivity type well region is formed on a first conductivity type substrate. A second conductivity type diffused source and second conductivity type diffused drain are formed on the first conductivity type substrate. A gate structure is formed on the second conductivity type well region between the second conductivity type diffused source and the second conductivity type diffused drain. First conductivity type buried rings are arranged in a horizontal direction, and formed in the second conductivity type well region, and divide the second conductivity type well region into an upper drift region and a lower drift region.
摘要:
High voltage semiconductor devices with Schottky diodes are presented. A high voltage semiconductor device includes an LDMOS device and a Schottky diode device. The LDMOS device includes a semiconductor substrate, a P-body region in a first region of the substrate, and an N-drift region in the second region of the substrate with a junction therebetween. A patterned isolation region defines an active region. An anode electrode is disposed on the P-body region. An N+-doped region is disposed in the N-drift region. A cathode electrode is disposed on the N+-doped region. The Schottky diode includes an N-drift region on the semiconductor substrate. The anode electrode is disposed on the N-drift region at the first region of the substrate. The N+-doped region is disposed on the N-drift region at the second region of the substrate. The cathode electrode is disposed on the N+-doped region.
摘要翻译:提出了具有肖特基二极管的高电压半导体器件。 高压半导体器件包括LDMOS器件和肖特基二极管器件。 LDMOS器件包括半导体衬底,衬底的第一区域中的P体区域和衬底的第二区域中的N漂移区域,其间具有接合部。 图案化隔离区限定有源区。 阳极电极设置在P体区域上。 N +掺杂区域设置在N漂移区域中。 在N +掺杂区域上设置阴极电极。 肖特基二极管包括半导体衬底上的N漂移区。 阳极电极设置在衬底的第一区域的N漂移区上。 N +掺杂区域设置在衬底的第二区域的N漂移区上。 阴极电极设置在N +掺杂区域上。
摘要:
A method for fabrication of a semiconductor device is provided. A first type doped body region is formed in a first type substrate. A first type heavily-doped region is formed in the first type doped body region. A second type well region and second type bar regions are formed in the first type substrate with the second type bar regions between the second type well region and the first type doped body region. The first type doped body region, the second type well region, and each of the second type bar regions are separated from each other by the first type substrate. The second type bar regions are inter-diffused to form a second type continuous region adjoining the second type well region. A second type heavily-doped region is formed in the second type well region.
摘要:
An electrostatic discharge protection device including a substrate, a first doped region, a first gate electrode, a second doped region, a second gate electrode, and a third doped region is disclosed. The substrate has a first conductive type. The first doped region has a second conductive type and is formed in the substrate. The first gate electrode is formed on the substrate. The second doped region has the second conductive type and is formed in the substrate. A transistor is constituted by the first doped region, the first gate electrode, and the second doped region. The second gate electrode is formed on the substrate. The first and the second gate electrodes are separated. The third doped region has the first conductive type and is formed in the substrate. A discharge element is constituted by the first doped region, the second gate electrode, and the third doped region.