摘要:
Corrosion resistant magnetic thin film media are fabricated using a CoCr magnetic layer having a stabilized protective chromium oxide film thereon. Stabilization of the protective chromium oxide film is achieved by incorporating a stabilizing element, such as Mo, V, Mn, Nb, Ni or Si, in the magnetic layer, thereby enabling elimination of the protective overcoat, e.g., C-containing protective overcoat, or forming the protective overcoat at a significantly low thickness of less than about 20 Å, e.g., up to about 1 Å. Embodiments include forming a magnetic layer comprising Co and Cr on an underlayer, and then forming a thin magnetic layer containing Co and Cr with the chromium oxide stabilizing element thereon. Embodiments further include introducing the chromium oxide stabilizing element by diffusion or ion implantation into a sputter deposited Co—Cr magnetic alloy layer.
摘要:
A method of manufacturing a granular perpendicular magnetic recording medium with improved corrosion resistance comprises sequential steps of providing a non-magnetic substrate including a surface; forming a soft magnetic underlayer (SUL) over the surface; post-deposition heating the SUL; forming an intermediate layer stack over the heated SUL; and forming at least one granular, magnetically hard perpendicular magnetic recording layer over the intermediate layer stack. Heating of the SUL prior to formation of the intermediate layer stack results in formation of an intermediate layer stack with a smoother surface and a granular perpendicular recording layer with increased corrosion resistance than when SUL post-deposition heating is not performed.
摘要:
A granular longitudinal or perpendicular magnetic recording medium with enhanced corrosion resistance comprises: (a) a non-magnetic substrate having a surface; (b) a layer stack on the substrate surface, including a granular longitudinal or perpendicular magnetic recording layer having a surface distal the substrate surface treated to provide at least one of: (i) a reduction of nano-scale roughness and porosity; (ii) increased compositional homogeneity; (iii) increased microstructural homogeneity; (iv) preferential removal of at least one element; and (v) increased grain boundary coverage by the subsequently deposited protective overcoat layer; and (c) a protective overcoat layer on the treated surface of the granular magnetic recording layer.
摘要:
A method of manufacturing a granular perpendicular magnetic recording medium with improved corrosion resistance comprises sequential steps of providing a non-magnetic substrate including a surface; forming a soft magnetic underlayer (SUL) over the surface; post-deposition heating the SUL; forming an intermediate layer stack over the heated SUL; and forming at least one granular, magnetically hard perpendicular magnetic recording layer over the intermediate layer stack. Heating of the SUL prior to formation of the intermediate layer stack results in formation of an intermediate layer stack with a smoother surface and a granular perpendicular recording layer with increased corrosion resistance than when SUL post-deposition heating is not performed.
摘要:
A perpendicular magnetic recording media having an amorphous corrosion-resistant cap layer is disclosed. Preferably, the cap layer is a chromium alloy comprising Pt and C. A method of manufacturing the media is also disclosed.
摘要:
A granular magnetic recording medium comprises a non-magnetic substrate having a surface, a layer stack on the substrate surface, including an outermost granular magnetic recording layer, a cap layer on the granular magnetic recording layer, having a sputter-etched outer surface, and a protective overcoat layer on the sputter-etched outer surface of the cap layer.
摘要:
Corrosion protection of magnetic recording media is achieved by providing a thin protective barrier layer comprising ruthenium on the magnetic layer. Embodiments include forming a corrosion barrier layer less than 10 Å of elemental ruthenium, a ruthenium oxide, a ruthenium alloy, a layer comprising mixed oxides of ruthenium and an alloying element, a composite of a ruthenium layer and a layer of ruthenium oxide or a composite of a ruthenium alloy layer and a layer of mixed oxides of ruthenium and an alloying element. A carbon containing an overcoat is then formed, as at a thickness of about 10 Å to 50 Å, on the corrosion protective layer.
摘要:
A component of a recording device comprising a magnetic layer, means for improving corrosion resistance of the magnetic layer and a carbon overcoat, and a method of making and using the same are disclosed. The means for improving corrosion resistance of the magnetic layer comprises a sealing layer comprising a refractory metal or a refractory metal-containing alloy.
摘要:
A magnetic recording medium comprising a magnetic layer and means for resisting corrosion of the magnetic layer, and a method of making and using the magnetic recording medium are disclosed.
摘要:
A magnetic recording medium with low bonded lubricant at the landing zone, where the head takes off and lands, for better wear resistance, and with high bonded lubricant at the data zone to protect the data from corrosion, and a method of making the same are disclosed.