摘要:
An approach for simulating hot carrier effects in an integrated circuit (IC) at the circuit level includes generating a hot carrier library of delay data for each cell in the IC, using the hot carrier library data to generate a set of scaled timing data for the IC and using the scaled timing data with a IC performance simulator to simulate the IC operation. The scaled timing data is based upon the cell delay data and time-based switching activity of each cell in the IC.
摘要:
The present invention is directed to a number of improvements in methods for hot-carrier device degradation modeling and extraction. Several improvements are presented for the improvement of building device degradation models, including allowing the user to select a device parameter used to build the device degradation model independent of the device parameter selected. The user can also select the functional relation between stress time and degradation level. To further improve accuracy, multiple acceleration parameters can be used to account for different regions of the degradation process. Analytical functions may be used to represent aged device model parameters, either directly or by fitting measured device parameters versus device age values, allowing devices with different age values to share the same device model. The concept of binning is extended to include device degradation. In addition to a binning based on device width and length, age is added. In an exemplary embodiment, only devices with minimum channel length have degraded models constructed. The present invention also allows the degradation of one device parameter to be determined based on an age value derived from another parameter. In yet another aspect, a degraded device is modeled as a fresh device with a voltage source connected to a terminal.
摘要:
The present invention is directed to a number of improvements in methods for hot-carrier device degradation modeling and extraction. Several improvements are presented for the improvement of building device degradation models, including allowing the user to select a device parameter used to build the device degradation model independent of the device parameter selected. The user can also select the functional relation between stress time and degradation level. To further improve accuracy, multiple acceleration parameters can be used to account for different regions of the degradation process. Analytical functions may be used to represent aged device model parameters, either directly or by fitting measured device parameters versus device age values, allowing devices with different age values to share the same device model. The concept of binning is extended to include device degradation. In addition to a binning based on device width and length, age is added. In an exemplary embodiment, only devices with minimum channel length have degraded models constructed. The present invention also allows the degradation of one device parameter to be determined based on an age value derived from another parameter. In yet another aspect, a degraded device is modeled as a fresh device with a voltage source connected to a terminal.
摘要:
An exemplary method for simulating the effect of mismatch in design flows comprises receiving measured data, receiving an original model, extracting a mismatch model based on the measured data and the original model, attaching the mismatch model to the netlist to obtain a modified netlist, and simulating an effect of mismatch based on the modified netlist. In one embodiment, the extracting of a mismatch model includes selecting a set of model parameters, generating a distribution of mismatch values for each of the model parameters, extracting a set of linking coefficients based on said mismatch values, and extracting said mismatch model based on said set of linking coefficients. In another embodiment, the attaching of the mismatch model to the netlist includes determining a number of layers in the netlist, generating a copy of a lower layer in the netlist, the copy including a reference to a mismatch model definition, generating a copy of a higher layer in the netlist, replacing a reference to the lower layer in the higher layer by a reference to the copy of the lower layer, and generating a new model definition.
摘要:
Method and system are disclosed for modeling dynamic behavior of a transistor. The method includes representing static behavior of a transistor using a lookup table, selecting an instance of the transistor from the lookup table for modeling dynamic behavior of the transistor, computing a previous state of the instance using a non-quasi static analytical model, computing a variation in channel charge of the instance according to a rate of change in time, computing a current state of the instance using the previous state and the variation in channel charge, computing a modified terminal voltage that includes a dynamic voltage across a parasitic resistance at the terminal of the transistor according to the current state and previous state of the instance, and storing the modified terminal voltage in a memory device for modeling dynamic behavior of the transistor at the current state.
摘要:
Method and system are disclosed for modeling dynamic behavior of a transistor. The method includes representing static behavior of a transistor using a lookup table, selecting an instance of the transistor from the lookup table for modeling dynamic behavior of the transistor, computing a previous state of the instance using a non-quasi static analytical model, computing a variation in channel charge of the instance according to a rate of change in time, computing a current state of the instance using the previous state and the variation in channel charge, computing a modified terminal voltage that includes a dynamic voltage across a parasitic resistance at the terminal of the transistor according to the current state and previous state of the instance, and storing the modified terminal voltage in a memory device for modeling dynamic behavior of the transistor at the current state.
摘要:
The present invention is directed to a number of improvements in methods for reliability simulations in aged circuits whose operation has been degraded through hot-carrier or other effects. A plurality of different circuit stress times can be simulated within a single run. Different aging criteria may be used for different circuit blocks, circuit block types, devices, device models and device types. The user may specify the degradation of selected circuit blocks, circuit block types, devices, device models and device types independently of the simulation. Device degradation can be characterized in tables. Continuous degradation levels can be quantized. Techniques are also described for representing the aged device in the netlist as the fresh device augmented with a plurality of independent current sources connected between its terminals to mimic the effects of aging in the device. The use of device model cards with age parameters is also described. To further improve the circuit reliability simulation, a gradual or multi-step aging is used instead of the standard one step aging process. Many of these features can be embedded within the circuit simulator. A user data interface is also presented to implement these techniques and further allow users to enter their device models not presented in the simulator. For example, a proprietary model of, say, the substrate current in an NMOS could used be with a SPICE simulator employing a different model to simulate the aging of the circuit.
摘要:
The present invention is directed to a number of improvements in methods for reliability simulations in aged circuits whose operation has been degraded through hot-carrier or other effects. A plurality of different circuit stress times can be simulated within a single run. Different aging criteria may be used for different circuit blocks, circuit block types, devices, device models and device types. The user may specify the degradation of selected circuit blocks, circuit block types, devices, device models and device types independently of the simulation. Device degradation can be characterized in tables. Continuous degradation levels can be quantized. Techniques are also described for representing the aged device in the netlist as the fresh device augmented with a plurality of independent current sources connected between its terminals to mimic the effects of aging in the device. The use of device model cards with age parameters is also described. To further improve the circuit reliability simulation, a gradual or multi-step aging is used instead of the standard one step aging process. Many of these features can be embedded within the circuit simulator. A user data interface is also presented to implement these techniques and further allow users to enter their device models not presented in the simulator. For example, a proprietary model of, say, the substrate current in an NMOS could used be with a SPICE simulator employing a different model to simulate the aging of the circuit.
摘要:
The present invention is directed to a number of improvements in methods for reliability simulations in aged circuits whose operation has been degraded through hot-carrier or other effects. A plurality of different circuit stress times can be simulated within a single run. Different aging criteria may be used for different circuit blocks, circuit block types, devices, device models and device types. The user may specify the degradation of selected circuit blocks, circuit block types, devices, device models and device types independently of the simulation. Device degradation can be characterized in tables. Continuous degradation levels can be quantized. Techniques are also described for representing the aged device in the netlist as the fresh device augmented with a plurality of independent current sources connected between its terminals to mimic the effects of aging in the device. The use of device model cards with age parameters is also described. To further improve the circuit reliability simulation, a gradual or multi-step aging is used instead of the standard one step aging process. Many of these features can be embedded within the circuit simulator. A user data interface is also presented to implement these techniques and further allow users to enter their device models not presented in the simulator. For example, a proprietary model of, say, the substrate current in an NMOS could used be with a SPICE simulator employing a different model to simulate the aging of the circuit.
摘要:
The present invention includes a method for modeling devices having different geometries, in which a range of interest for device geometrical variations is divided into a plurality of subregions each corresponding to a subrange of device geometrical variations. The plurality of subregions include a first type of subregions and a second type of subregions. The first or second type of subregions include one or more subregions. A regional global model is generated for each of the first type of subregions and a binning model is generated for each of the second type of subregions. The regional global model for a subregion uses one set of model parameters to comprehend the subrange of device geometrical variations corresponding to the G-type subregion. The binning model for a subregion includes binning parameters to provide continuity of the model parameters when device geometry varies across two different subregions.