摘要:
A set of different pilot structures are designed for use in different environments and/or different user behaviours that are expected to occur in a cell. The radio conditions for a user are estimated. Each user is then assigned an area (108A-E) in resource space for its communication, which has a suitable pilot configuration. In one embodiment, the entire resource space is provided with different pilot structures in different parts (110A-D) In advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure. In another embodiment, allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions.
摘要:
A set of different pilot structures are designed for use in different environments and/or different user behaviours that are expected to occur in a cell. The radio conditions for a user are estimated. Each user is then assigned an area (108A-E) in resource space for its communication, which has a suitable pilot configuration. In one embodiment, the entire resource space is provided with different pilot structures in different parts (110A-D) In advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure. In another embodiment, allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions.
摘要:
A set of different pilot structures are designed for use in different environments and/or different user behaviors that are expected to occur in a cell. The radio conditions for a user are estimated. Each user is then assigned an area (108A-E) in resource space for its communication, which has a suitable pilot configuration. In one embodiment, the entire resource space is provided with different pilot structures in different parts (110A-D) In advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure. In another embodiment, allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions.
摘要:
A set of different pilot structures are designed for use in different environments and/or different user behaviours that are expected to occur in a cell. The radio conditions for a user are estimated. Each user is then assigned an area (108A-E) in resource space for its communication, which has a suitable pilot configuration. In one embodiment, the entire resource space is provided with different pilot structures in different parts (110A-D) In advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure. In another embodiment, allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions.
摘要:
The technology disclosed provides the ability for a subframe to be configured as a “flexible” subframe. As a result, at least three different types of subframes in a TDD system may be configured: a downlink (“DL”) subframe, an uplink (“UL”) subframe, and a “flexible” subframe. While the DL and UL subframes are preconfigured for each frame instance, the flexible subframes are dynamically allocated to be an uplink subframe in one instance of a frame and a downlink subframe in another instance of the frame.
摘要:
A system and a method for wireless linking in a cellular communication system are disclosed such that a mobile station is maintained in simultaneous communication with at least a first node and a second node for access to the cellular communication system. Information going to and from the first node is not identical to the information going to and from the second node. In one embodiment the second node, or secondary access point is a relay node forwarding received information to and from the first node, or primary access point. In another embodiment the second node is another mobile station performing a direct mobile-to-mobile communication (MS-to-MS). In still an embodiment a first wireless link to the first node is for control information only. In still a further embodiment a second wireless link to the second node is only for communication of information from the mobile station or only for communication of information to the mobile station.
摘要:
A method for improving the performance of a random access communications system in a variable radio environment is disclosed, whereby at least one valid set of burst signatures is used for transmission by one or more mobile stations. Each set includes at least one signature with a different signature-length than the signatures in other sets. The different signature-lengths can be optimized for the operational environments involved (e.g., longer signatures for slower-moving mobile stations, and shorter signatures for high-speed mobile stations). Alternatively, at least one differentially-encoded signature is used for random access transmissions, in order to reduce the radio channel's sensitivity to large doppler spreads and frequency errors.
摘要:
In a system applying orthogonal frequency division multiplexing, OFDM, a number of carriers are reserved for communication between unsynchronized nodes (N1, N2). At least one such reserved carrier is assigned to each base station. A sinusoidal signal is transmitted on this reserved carrier during a time period at least equal to two consecutive OFDM symbols. The unsynchronized receiver detects the sinusoidal signal during one of two consecutive OFDM symbol time periods. The existence, the frequency and the signal power of the signal give information about the existence and identity of the transmitter. Also, estimates of relative velocities and distances can be deduced. In preferred embodiments, the sinusoidal signal can also be used to transmit further information by using signal modulation or coding that is independent of the absolute signal phase.
摘要:
A cellular communications system that utilizes OFDM in its radio interface is capable of utilizing either a first subcarrier spacing or a second subcarrier spacing. Which of these is presently in use is indicated by generating a first type of synchronization signal in response to the first subcarrier spacing presently being in use, and generating a second type of synchronization signal in response to the second subcarrier spacing presently being in use. Whichever of the first type of synchronization signal and the second type of synchronization signal was generated is transmitted. To distinguish between the first and second types of synchronization signals, a time domain representation of the second type of synchronization signal includes a plurality of instances of the first type of synchronization signal.
摘要:
Timing parameters and an identity of a particular one of a number of cell groups are indicated in a signal transmitted in a cellular communication system having a radio frame in a physical layer, the radio frame comprising a number of time slots. In a known one of the time slots, a synchronization signal, S1, is transmitted that comprises a pair of sequences, Si%,Sj% (Si%≠Sj% arranged in a first ordering. In another known one of the time slots, a synchronization signal, S2 is transmitted that comprises the pair of sequences, Si%,Sj% arranged in a second ordering. The selected pair of sequences is uniquely identified with the particular cell group, and the first ordering of the sequences is used only for transmission in the known one of the time slots, and the second ordering of the sequences is used only for transmission in said another known one of the time slots.