摘要:
A method of identifying analytes that react with probes on encoded particles. The method includes providing a support substrate that has a plurality of the particles randomly distributed on the support substrate. The particles have elongated bodies with codes that extend along the corresponding bodies. The codes identify probes that are attached to the corresponding bodies, wherein at least some of the probes include fluorescent labels from reactions with the analytes. The method also includes detecting fluorescent signals that are emitted from the fluorescent labels. The fluorescent signals emit from random spatial locations along the support substrate. The method also includes detecting the codes of the particles at the random spatial locations along the support substrate and analyzing the codes and the fluorescent signals to identify the analytes that react with the probes on the particles.
摘要:
An optical reader system including a source light assembly that has a code-reading beam and a fluorescence-excitation beam that are configured to illuminate encoded substrates. The substrates have optically readable codes that provide output signals when the code-reading beam is incident thereon. The output signals are indicative of the codes. The reader system also includes a fluorescence detector that is configured to detect fluorescent signals from the substrates and code pickup optics that are configured to project the output signals from the optically readable codes onto a Fourier plane. The reader system also includes a code detector that is positioned to detect the output signals in the Fourier plane.
摘要:
An optical reader system that includes a plurality of substrates. The substrates have an optically readable code disposed therein and a source light assembly that is configured to illuminate the substrates with a code-reading beam and another beam for detecting another optically readable property of the substrate. The code-reading beam and the other beam form beam spots on the substrates that have different shapes. The system also includes a reader that is configured to receive output signals from the code-reading beam and the other beam when the substrates are illuminated. The output signals from the code-reading beam are indicative of the code.
摘要:
A method of identifying an analyte. The method includes providing a plurality of microparticles. The microparticles have optically detectable codes extending along bodies of the corresponding microparticle. The microparticles have the chemical probes attached thereto. Each of the chemical probes is associated with a corresponding one of the codes. The method also includes selectively binding target analytes to the chemical probes on the microparticles to produce labeled microparticles and distributing the labeled microparticles to random locations of a substrate. The method also includes determining the codes for the labeled microparticles in the random array and code positions of the codes in the random array. The method further includes detecting the label on the labeled microparticles in the random array and label positions of the labels in the random array. The method also includes using the code positions and the label positions to analyze the target analyte.
摘要:
A method and apparatus for performing an assay process, featuring providing microbeads in a solution, each microbead having a particle substrate with a grating with a superposition of different predetermined regular periodic variations of the index of refraction disposed in the particle along a grating axis and indicative of a code; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps.
摘要:
An optical reader system 7 for diffraction grating-based encoded microbeads (or bead reader system), comprises a reader box 100, which accepts a bead cell (or cuvette) 102 that holds the microbeads 8, having an embedded code therein. The reader box 100 interfaces along lines 103 with a known computer system 104. The reader box 100 interfaces with a stage position controller 112 and the controller 112 interfaces along a line 115 with the computer system 104 and a manual control device (or joy stick) 116 along a line 117. The reader interrogates the microbeads to determine the embedded code and/or the fluorescence level on the beads. The reader provides information similar to a bead flow cytometer but in a planar format, i.e., a virtual cytometer.
摘要:
A method and apparatus for labeling an item using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The element 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The encoded element 8 may be used to label any desired item, such as large or small objects, products, solids, powders, liquids, gases, plants, minerals, cells and/or animals, or any combination of or portion of one or more thereof. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods/products.
摘要:
A method and apparatus for performing an assay process, featuring providing microbeads in a solution, each microbead having a particle substrate with a grating with a superposition of different predetermined regular periodic variations of the index of refraction disposed in the particle along a grating axis and indicative of a code; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps.
摘要:
A method and apparatus f or performing an assay process, featuring providing microbeads in a solution; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps, where the microbead is an encoded particle having a particle substrate; a portion of the substrate being made of a substantially single material and having at least one diffraction grating embedded therein, the grating having a resultant refractive index variation within the single material at a grating location; and the grating providing an optical output signal indicative of a code when illuminated by an incident light signal propagating from outside said substrate, the optical output signal being a result of passive, non-resonant scattering from said grating when illuminated by said incident light signal.
摘要:
An assay stick 7 includes a transparent reaction vessel or tube 14 having one or more microbeads 8 disposed therein. The microbeads 8 have a plurality of unique identification digital codes based on a diffraction grating 12 disposed therein that are detected when illuminated by incident light 24. The incident light 24 may be directed transversely onto the side or onto an end of the tube 14 with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The assay stick 7 may be reused or disposed upon completion of the assay. Alternatively, the beads may be attached to a strip or planar surface. The encoded beads can also provide traceability, quality-control, and authenticity of each bead 8 to its source and/or to the chemistry on each bead 8. Also, the low sample volume of the assay stick allows for faster reactions and better sensitivity.