摘要:
A rechargeable implantable medical device with an external recharging coil carried on the medical device proximal face. The recharging coil can be attached to the medical device housing physically, or chemically, or a combination of both physically and chemically. The recharging coil electrically couples through housing electrical feedthroughs to electronics configured to perform a therapy and a rechargeable power source both carried inside the medical device housing. Additionally methods for attaching the external recharging coil to an implantable medical device are disclosed. The rechargeable implantable medical device can be a medical devices such as a neuro stimulators, drug delivery pumps, pacemakers, defibrillators, diagnostic recorders, cochlear implants, and the like.
摘要:
A rechargeable implantable medical device with a magnetic shield placed on the distal side of a secondary recharging coil to improve charging efficiency is disclosed. The rechargeable implantable medical device can be a wide variety of medical devices such as neuro stimulators, drug delivery pumps, pacemakers, defibrillators, diagnostic recorders, cochlear implants. The implantable medical device has a secondary recharging coil carried over a magnetic shield and coupled to electronics and a rechargable power source carried inside the housing. The electronics are configured to perform a medical therapy. Additionally a method for enhancing electromagnetic coupling during recharging of an implantable medical device is disclosed, and a method for reducing temperature rise during recharging of an implantable medical device is disclosed.
摘要:
A rechargeable implantable medical device with a magnetic shield placed on the distal side of a secondary recharging coil to improve recharging efficiency is disclosed. The rechargeable implantable medical device can be a wide variety of medical devices such as neuro stimulators, drug delivery pumps, pacemakers, defibrillators, diagnostic recorders, and cochlear implants. The implantable medical device has a secondary recharging coil carried over a magnetic shield and coupled to electronics and a rechargeable power source carried inside the housing. The electronics are configured to perform a medical therapy. Additionally a method for enhancing electromagnetic coupling during recharging of an implantable medical device is disclosed, and a method for reducing temperature rise during recharging of an implantable medical device is disclosed.
摘要:
A rechargeable implantable medical device with a magnetic shield placed on the distal side of a secondary recharging coil to improve charging efficiency is disclosed. The rechargeable implantable medical device can be a wide variety of medical devices such as neuro stimulators, drug delivery pumps, pacemakers, defibrillators, diagnostic recorders, cochlear implants. The implantable medical device has a secondary recharging coil carried over a magnetic shield and coupled to electronics and a rechargeable power source carried inside the housing. The electronics are configured to perform a medical therapy. Additionally a method for enhancing electromagnetic coupling during recharging of an implantable medical device is disclosed, and a method for reducing temperature rise during recharging of an implantable medical device is disclosed.
摘要:
The intravascular catheter has two segments; a proximal segment with high stiffness and a distal segment with lower stiffness. The catheter can also have an intermediate segment of lower stiffness than the proximal segment and higher stiffness than the distal segment. The catheter comprises a polymeric inner tube, a reinforcing inner jacket which is spirally wound over the inner tube and which becomes progressively softer from a proximal end to a distal end, and a polymeric outer sheath extruded over the inner jacket according to the teachings of U.S. Pat. No. 5,445,624. The reinforcing jacket comprises helical coiled wires or fibers of various materials and layers wound over the inner tube in order to provide improved multi-axial mechanical properties, such as torque, compression, tension and anti-kinking characteristics. Stainless steel, carbon, glass, platinum, platinum/tungsten or palladium wire in either oval, round or flat geometry are used together with single or dual layers to achieve a graduated stiffness with the reinforcing jacket being stiffer at a proximal end and softer at a distal end. Methods for making the catheter and for annealing ends of the wound wire are also disclosed.
摘要:
The implantable, electrically operated medical device system comprises an implanted radio frequency (RF) receiving unit (receiver) incorporating a back-up rechargeable power supply and an implanted, electrically operated device, and an external RF transmitting unit (transmitter). RF energy is transmitted by the transmitter and is coupled into the receiver which is used to power the implanted medical device and/or recharge the back-up power supply. The back-up power supply within the receiver has enough capacity to be able to, by itself, power the implanted device coupled to the receiver for at least 24 hours during continual delivery of medical therapy. The receiver is surgically implanted within the patient and the transmitter is worn externally by the patient. The transmitter can be powered by either a rechargeable or non-rechargeable battery. In a first mode of operation, the transmitter will supply power, via RF coupled energy, to operate the receiver and simultaneously recharge the back-up power supply. In a second mode of operation, the receiver can, automatically or upon external command from the transmitter, acquire its supply of power exclusively from the back-up power supply. Yet, in a third mode of operation, the receiver can, automatically or upon command from the transmitter, alternatively acquire its supply of power from either, RF energy coupled into the receiver or the internal back-up power supply.
摘要:
The balloon catheter comprises a plastic tubing, a balloon fused to one end portion of said tubing, and the balloon being made of a polymer and on of a carbon nano-tube material, a nano-clay material or a nano-ceramic fiber material.
摘要:
The method for making a reinforced balloon for a balloon catheter involves blending a polymer with a nano composite to form a composite matrix, extruding a parison from the composite matrix, blow molding the parison into a balloon and orienting the nano composite generally axially with respect to the balloon. The balloon formed has a high strength for resisting bursting. The nano composite may be carbon nanotubes, nano-ceramic fibers or a nano clay.
摘要:
The method and system for managing power supplied from a charging circuit to a power source in an implantable medical device comprises the steps of and circuitry for: measuring the current drain of the medical device; measuring the elapsed time since the last full charge of a power source of the device; calculating the actual capacity of the power source (corrected for fade) based on the variable of current drain and the variable of elapsed time; calculating the operating time based on the variable of current drain and the variable of the actual capacity of the power source; measuring the voltage of the power source; signaling the medical device when the power source voltage has reached a certain low value which requires disconnection from the power source; disconnecting, during discharging, the power source from the medical device upon the power source reaching a certain low voltage in order to prevent deep discharging of the power source and subsequent damage; precisely limiting the charging voltage to the power source in order to prevent overcharging beyond safe limits; disconnecting, during charging, the power source from the charging circuit upon the power source reaching a certain high voltage in order to prevent overcharging of the power source and subsequent damage; sensing when the electromagnetic waves being transmitted by an RF transmitter/charger induce a voltage level above a certain value at an RF receiver of the implanted power management system; reconnecting power supply inputs of the medical device to the power source upon sensing this induced high voltage level; monitoring the temperature of the power source during charging and discharging; disconnecting the charging circuitry from the power source if the temperature of the power source raises above a certain level during charging; reconnecting the charging circuitry to the power source when the temperature of the power source drops below a certain low value during charging; disconnecting the implanted medical device from the power source if the temperature of the power source raises above a certain level during discharging; and, reconnecting the medical device to the power source when the temperature of the power source drops below a certain low value during discharging.
摘要:
The activity sensing pacemaker comprises: a heart pulse sensing device for sensing heart pulses; pulse generating circuitry for generating pacing pulses; activity sensing structure and circuitry for sensing activity/movement of a patient wearing the pacemaker in one or more of three directions/dimensions, x, y, z, and for causing the pulse generating circuitry to generate pacing pulses at a rate/frequency related to the movements sensed; and, control circuitry coupled to the heart pulse sensing device, to the pulse generating circuitry and to the activity sensing structure and circuitry for controlling the pulse generating circuitry in response to the heart pulses sensed or in response to the patient movements sensed, the activity sensing structure and circuitry causing generation of control pulses related to the movements of the patient and the control circuitry including frequency sensing circuitry for sensing the frequency of the control pulses generated and for controlling the rate/frequency of the pacing pulses generated by the pulse generating circuitry relative to the frequency of the control pulses generated by the movements of the patient in one or more directions/dimensions, x, y, z, independent of the duration or amplitude of the control pulses.