Abstract:
A liquid separation system and related method for retaining floating and non-floating particulates within a storage chamber of a treatment tank. The tank may or may not include a bypass to allow a portion of liquid coming into the tank to bypass the storage chamber. The storage chamber includes an inlet and an outlet. The outlet may be positioned within the storage chamber to cause minimal disruption of the primary and secondary liquid flow patterns within the storage chamber. A circular or rotational flow pattern may be created within the storage chamber and an outlet port of the storage chamber may be centered on an axis of the circular flow pattern.
Abstract:
A generator rotor pole crossover including a substantially U-shaped portion from which extend legs curving outwardly. The U-shaped portion is thickened in one direction but thinned in another direction, relative to the leg thickness. This configuration provides flexibility to the crossover, decreased stress and relatively constant cross section of resistance purposes. The legs are brazed to the copper conductor winding ends by scarf and lap joints, respectively. The crossover may replace defective crossovers in the field by removing only the end plate of the generator. This allows installation in a short time without risk of damage to generator insulation.
Abstract:
An X-ray generating apparatus is provided with a unitary vacuum enclosure having a rotating anode target and a cathode assembly for generating X-rays transmitted through an X-ray window. The cathode assembly is placed within the vacuum enclosure through an opening in the top wall thereof, and comprises a disk which completely covers this opening. The unitary vacuum enclosure and the disk form a radiation shield. For increasing a thermal capacity of the unitary vacuum enclosure and installing the X-ray generating apparatus into a gantry it further comprises a mounting block which may be coupled to or encompass the unitary vacuum enclosure. The X-ray window is placed within the mounting block. A window adaptor may be utilized for the X-ray window installation.
Abstract:
The invention provides crystalline paroxetine hydrochloride hemihydrate, processes for its preparation, compositions containing the same and its therapeutic use as an anti-depressant.
Abstract:
A liquid separation system and related method for retaining floating and non-floating particulates within a storage chamber of a treatment tank. The tank may or may not include a bypass to allow a portion of liquid coming into the tank to bypass the storage chamber. The storage chamber includes an inlet and an outlet. The outlet may be positioned within the storage chamber to cause minimal disruption of the primary and secondary liquid flow patterns within the storage chamber. A circular or rotational flow pattern may be created within the storage chamber and an outlet port of the storage chamber may be centered on an axis of the circular flow pattern.
Abstract:
An X-ray generation apparatus has a housing comprising an evacuated envelope with a rotatable anode target surrounded by an all metal grounded exterior structure and a cooling system. The cooling system comprises a coolant circulating system with heat exchanger and means for circulating a fluid coolant through an interior of the X-ray generating apparatus; a hollow shield structure with center aperture for passing and electron beam; and a cooling block which is disposed proximate to the rotatable anode target and comprises a disk with a plurality of concentric annular channels formed by concentric annular partitions. The shield structure and the disk of the cooling block are made of thermally conductive material. An interior of the shield structure is filled with structures such as pins, fins or pack bed which are made of thermally conductive materials. The fluid coolant is circulated through the shield structure, then into the plurality of channels of the cooling block and via an interior of the housing to the heat exchanger for efficient cooling of the X-ray generating apparatus.
Abstract:
An x-ray tube cooling system including a heat sink at least partially disposed within an evacuated housing of the x-ray tube and having a cooling block partially received within the bearing housing so as to absorb heat transmitted to the bearing assembly and bearing housing. Extended surfaces, are disposed in a coolant chamber cooperatively defined by the cooling block and a shell within which the cooling block is partially received. The shell defines a coolant chamber entrance and coolant chamber exit in fluid communication with the coolant chamber. The coolant chamber entrance and exit communicate with corresponding coolant inlet and outlet passageways, respectively, cooperatively defined by a pair of insulators which retain the heat sink in a predetermined orientation within an evacuated envelope of an x-ray device. A circulating coolant contacts the extended surfaces and thereby removes heat from various structures of the x-ray device.
Abstract:
A cooling system for use with high-power x-ray tubes. The cooling system includes a dielectric coolant disposed in the x-ray tube housing so as to absorb heat dissipated by the stator and other electrical components, as well as absorbing some heat from the x-ray tube itself. The cooling system also includes a coolant circuit employing a pressurized water/glycol solution as a coolant. Pressurization of the water/glycol solution is achieved by way of an accumulator which, by pressurizing the coolant to a desired level, raises its boiling point and capacity to absorb heat. A coolant pump circulates the pressurized coolant through a fluid passageway defined in an aperture of the x-ray tube and through a target cooling block disposed proximate to the x-ray tube in the x-ray tube housing, so as to position the coolant to absorb some of the heat generated at the aperture by secondary electrons, and the heat generated in the target cooling block by the target anode of the x-ray tube. The target cooling block is in contact with the dielectric fluid so that some of the heat absorbed by the dielectric coolant is transferred to the coolant flowing through the target cooling block. The heated coolant is then passed through an air/water radiator where a flow of air serves to remove some heat from the coolant. Thus cooled, the coolant then exits the radiator to repeat the cycle.
Abstract:
A rotating sealing device for sealing between a wall separating two mediums under substantially different pressure and a rotatable shaft utilizes a combination of a liquid meatal seal comprising at least one liquid metal ring and a shield means which prevents contamination of the metal ring by gases coming into contact with the liquid metal. Magnetic fluid seal, a ring of an oil material, or inert gas may be used as a shield to protect the liquid metal.
Abstract:
An x-ray device and method useful in performing close coupled sample analyses. The x-ray device includes an evacuated enclosure having a window and in which is disposed a cathode assembly, control grid, insulator, and anode arranged so that the anode is interposed between the electron source and the window. The anode includes a target surface oriented toward the window and the anode defines a drift tunnel which is substantially aligned with a hollow defined by the insulator. The control grid can be used to influence the energy of the electrons emitted by the filament of the cathode assembly. A high voltage field between the anode and filament causes electrons emitted by the cathode to accelerate rapidly through the insulator. After accelerating to an energy level consistent with the high voltage field, the electrons then pass through the drift tunnel without gaining any additional appreciable energy. The potential difference between the target surface and the window causes the drifting electrons to decelerate, and eventually stop, before they can strike the window. The decelerated electrons then re-accelerate, under the influence of the potential between the window and the anode, toward the target surface, striking the target surface and producing x-rays which are directed through the window so as to impact a sample. One or more detectors proximate to the sample sense the characteristic response emitted by the sample when it is struck by the x-rays produced by the x-ray tube. A computer in communication with the detectors facilitates processing and analysis of the characteristic response sensed by the detectors.