摘要:
An improved method for building a plug in a horizontal wellbore using a fluid pill pumped into the wellbore at the end of a fracturing treatment. The fluid pill includes a high concentration of an ultra lightweight proppant, such as a neutrally buoyant proppant or an ultra lightweight proppant mixture. The fluid pill is pumped down the wellbore until it almost reaches fractures within a zone of interest. The pumping is then ceased or reduced, allowing the fractures to partially close. The ultra lightweight proppant remains suspended within the fluid pill while stationary. The pumping is then resumed at a very slow rate or as a short pump burst, thus causing the proppant in the fluid pill to bridge off until a bridge plug is formed.
摘要:
An improved method for building a plug in a horizontal wellbore using a fluid pill pumped into the wellbore at the end of a fracturing treatment. The fluid pill includes a high concentration of an ultra lightweight proppant, such as a neutrally buoyant proppant or an ultra lightweight proppant mixture. The fluid pill is pumped down the wellbore until it almost reaches fractures within a zone of interest. The pumping is then ceased or reduced, allowing the fractures to partially close. The ultra lightweight proppant remains suspended within the fluid pill while stationary. The pumping is then resumed at a very slow rate or as a short pump burst, thus causing the proppant in the fluid pill to bridge off until a bridge plug is formed.
摘要:
The illustrated embodiments relate to a process for improving retention time of a set of integrated circuit devices. The process comprises placing the set of integrated circuit devices in a reverse bias condition, and elevating the surrounding temperature of the set of integrated circuit devices for a predetermined period of time.
摘要:
Field isolation structures and methods of forming field isolation structures are described. In one implementation, the method includes etching a trench within a monocrystalline silicon substrate. The trench has sidewalls and a base, with the base comprising monocrystalline silicon. A dielectric material is formed on the sidewalls of the trench. Epitaxial monocrystalline silicon is grown from the base of the trench and over at least a portion of the dielectric material. An insulating layer is formed over the epitaxial monocrystalline silicon. According to one implementation, the invention includes a field isolation structure formed within a monocrystalline silicon comprising substrate. The field isolation structure includes a trench having sidewalls. A dielectric material is received on the sidewalls within the trench. Monocrystalline silicon is received within the trench between the dielectric material of the sidewalls. An insulating layer is received over the monocrystalline silicon within the trench. Additional implementations are contemplated.