Abstract:
A carding machine has a toothed takerin (4a) for taking fibre to be carded from a feed arrangement (3a) to a main carding cylinder (5a). The fibre is conveyed on the lower arc of the takerin, and a substantially rigid, flat plate (10) lies below the lower arc of the takerin. The plate extends across the full width of the takerin and terminates in a free edge facing into the direction of roation of the takerin and substantially parallel to the takerin axis. The free edge is spaced from the tips of the teeth on the takerin by a distance of not more than 5 mm, and the plate lies in a plane that makes an angle of from 75.degree. to 120.degree. to that radial plane of the takerin that intersects the free edge of the plate.
Abstract:
A system of imaging and non-imaging sensors are used in combination with a graphical user interface (GUI) system on a vehicle to detect items of interest. In particular, a GUI has been developed that seamlessly integrates high magnification, Narrow Field of View (NFOV) imaging sensors and Wide Field of View (WFOV) imaging sensors. The GUI is capable of displaying both WFOV and NFOV images, gimbal controls, and allow NFOV sensor to be pointed to any location within the wide field of view efficiently by a single touch of a touch screen display. The overall goal is to allow an operator to select which imagery from multiple WFOV sensors to display in order to prescreen regions of interest that require further investigation using sensors with more magnification.
Abstract:
A system of imaging and non-imaging sensors are used in combination with a graphical user interface (GUI) system on a vehicle to detect items of interest. In particular, a GUI has been developed that seamlessly integrates high magnification, Narrow Field of View (NFOV) imaging sensors and Wide Field of View (WFOV) imaging sensors. The GUI is capable of displaying both WFOV and NFOV images, gimbal controls, and allow NFOV sensor to be pointed to any location within the wide field of view efficiently by a single touch of a touch screen display. The overall goal is to allow an operator to select which imagery from multiple WFOV sensors to display in order to prescreen regions of interest that require further investigation using sensors with more magnification.
Abstract:
A method and apparatus for computed axial tomography (CAT) image reconstruction applicable to X-ray scanning of the human body. Successive series of calculations determine the values of a characteristic in defined segmented areas of an examination plane. A reduction in the time and equipment requirements for reconstruction calculations may thereby be effected.Images representative of the difference between the value of the characteristic at a reconstruction point and the average value of the characteristic in adjacent regions (.DELTA..mu.) may be calculated and displayed from measurements taken within a localized contiguous region of the examination plane. Radiation dose to patients and computation time in X-ray computerized axial tomography scanning systems is thus reduced. Differential displays of the type described may be adjusted to image boundaries, in which case they do not suffer from gray scale resolution problems which are typical of prior art displays.Image artifacts attributable to interpolation errors may be reduced with negligable effect on resolution by incorporating a weighting function, preferentially a Gaussian function, in the image reconstruction.
Abstract:
A method and apparatus for computed axial tomography (CAT) image reconstruction applicable to X-ray scanning of the human body. Successive series of calculations determine the values of a characteristic in defined segmented areas of an examination plane. A reduction in the time and equipment requirements for reconstruction calculations may thereby be effected.Images representative of the difference between the value of the characteristic at a reconstruction point and the average value of the characteristic in adjacent regions (.DELTA..mu.) may be calculated and displayed from measurements taken within a localized contiguous region of the examination plane. Radiation dose to patients and computation time in X-ray computerized axial tomography scanning systems is thus reduced. Differential displays of the type described may be adjusted to image boundaries, in which case they do not suffer from gray scale resolution problems which are typical of prior art displays.Image artifacts attributable to interpolation errors may be reduced with negligable effect on resolution by incorporating a weighting function, preferentially a Gaussian function, in the image reconstruction.