摘要:
Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high or low temperature cofired ceramic layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package. DC and logic input/output control signals are connected to a plurality of active circuit components including application specific integrated circuits (ASICs) and monolithic microwave integrated circuit chips (MMICs) via spring contact pads at the rear of the package. An RF connector assembly for coupling transmit and receive signals to and from the module is located at the front of the package. The RF transmit power amplifiers which generate most of the heat in the module package are located in a first pair of cavities formed in the substrate directly behind the RF connector assembly and are mounted directly on a pair of flat heat sink plates which are secured to the bottom of the substrate and acts as a thermal interface to an external heat exchanger such as a cold plate. A second pair of cavities in which are located the RF receive signal amplifiers and their respective receiver protector elements, is located beside the first pair of cavities directly behind the RF connector for reducing RF signal loss.
摘要:
Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package. DC and logic input/output control signals are connected to a plurality of active circuit components including application specific integrated circuits (ASICs) and monolithic microwave integrated circuit chips (MMICs) via spring contact pads at the rear of the package. The MMICs which generate substantially all of the heat are located in multi-level cavities formed in the substrate and are bonded directly to a generally flat a heat sink plate which is secured to the bottom of the substrate and acts as a thermal interface to an external heat exchanger such as a cold plate. DC power conditioning is also provided by a capacitive bank type of energy storage subassembly externally attached to the rear of the module package for supplying supplementary power to the module during peak power operation. The T/R module is one module of an array of like T/R modules coupled to an active aperture of a radar system.
摘要:
Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package. DC and logic input/output control signals are connected to a plurality of active circuit components including application specific integrated circuits (ASICs) and monolithic microwave integrated circuit chips (MMICs) via spring contact pads at the rear of the package. The T/R module is one module of an array of like T/R modules coupled to an active aperture of a radar system.
摘要:
A transmit/receive (T/R) module adapted for use in a radar system. The module has a unified structure including a layered substrate on and in which two T/R channel circuits are integrated. The channel circuits make use of power distribution, channel controller, and RF signal routing circuitry, partly on a channel shared basis. In the RF routing circuitry, respective coupler elements are employed to combine RF receive signals for output to an RF receive manifold and to split an RF transmit signal from a transmit manifold into separate RF transmit signals for input to the T/R channel circuits.
摘要:
A transmit/receive (T/R) module adapted for use in a radar system. The module has a unified structure including a layered substrate on and in which two T/R channel circuits are integrated. The channel circuits make use of power distribution, channel controller, and RF signal routing circuitry, partly on a channel shared basis. In the RF routing circuitry, respective coupler elements are employed to combine RF receive signals for output to an RF receive manifold and to split an RF transmit signal from a transmit manifold into separate RF transmit signals for input to the T/R channel circuits.
摘要:
Slots or apertures are formed in the connector shroud of a T/R module in a plane perpendicular to the axis of the connector so as to allow plating solution to flow freely through the entire inner portion of the connector, particularly the rear portion, during fabrication of the T/R module. The slots are formed prior to the shroud being brazed on to the module substrate. By allowing plating solution to flow through the connector, the interior of the connector can be more thoroughly plated, thereby improving the yield of the assembly while reducing cost.