摘要:
The disclosure provides a system that displays graphical representations of posture zones associated with posture states of a patient, on a display device communicatively coupled to a medical device. The medical device is configured to deliver therapy to the patient based on detected posture states of the patient, where the detected posture state is based on the posture zones. The display device may allow a user to manipulate the graphical representations of the posture zones, including changing the size of the posture zones. Additionally, the display device may allow a user to change transition times associated with transitions between posture states, and displaying an indication of the changed transition time by highlighting the two graphical representations of the posture zones corresponding to the posture states associated with the changed transition time.
摘要:
The disclosure provides a system that displays graphical representations of posture zones associated with posture states of a patient, on a display device communicatively coupled to a medical device. The medical device is configured to deliver therapy to the patient based on detected posture states of the patient, where the detected posture state is based on the posture zones. The display device may allow a user to manipulate the graphical representations of the posture zones, including changing the size of the posture zones. Additionally, the display device may allow a user to change transition times associated with transitions between posture states, and displaying an indication of the changed transition time by highlighting the two graphical representations of the posture zones corresponding to the posture states associated with the changed transition time.
摘要:
This disclosure is related to techniques for presenting therapy factors related to medical device therapy in a manner that allows a user, such as a patient or a clinician, to receive, comprehend and evaluate information relating to therapy delivered by the medical device efficiently. In one aspect, a method comprises obtaining a data set corresponding to a therapy factor associated with delivery of a medical therapy to a patient with a medical system including an implantable medical device, receiving a user selection associated with a subset of the data set, the subset of the data set including less than all the information relating to the therapy factor in the data set, and presenting a representation, corresponding to the subset of the data set, of the therapy factor on a display of a programmer.
摘要:
This disclosure is related to techniques for presenting therapy factors related to medical device therapy in a manner that allows a user, such as a patient or a clinician, to receive, comprehend and evaluate information relating to therapy delivered by the medical device efficiently. In one aspect, a method comprises obtaining a data set corresponding to a therapy factor associated with delivery of a medical therapy to a patient with a medical system including an implantable medical device, receiving a user selection associated with a subset of the data set, the subset of the data set including less than all the information relating to the therapy factor in the data set, and presenting a representation, corresponding to the subset of the data set, of the therapy factor on a display of a programmer.
摘要:
Various programming techniques are described for medical devices that deliver electrical stimulation therapy that may include mapping between discrete electrical stimulation parameters and a graphical view of the electrical stimulation representing a stimulation zone generated by the parameters. In one example, a method includes receiving, via a programmer for an electrical stimulator, user input that graphically manipulates at least one of size and a shape of a graphical representation of at least one electrical stimulation zone displayed on the programmer, and defining a program to control delivery of electrical stimulation therapy based on the user input.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state of the patient to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
Techniques are described, for medical devices that deliver electrical stimulation therapy, for controlling a transition from an initial stimulation location or initial stimulation shape to a user-specified target stimulation location or target stimulation shape in order to limit the rate of change of stimulation. One example method includes receiving, via a programmer for an electrical stimulator, user input indicating a target stimulation zone, and controlling the electrical stimulator to transition electrical stimulation from an initial stimulation zone to the target stimulation zone via one or more intermediate stimulation zones.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state of the patient to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
A system and method for determining, during a recharge session, an amount of time until a subsequent recharge session is required to charge a rechargeable power source of an implantable medical device. A model allows a determination of the time until recharge without suspending charging during the recharge session by basing the determination on an initial measured battery voltage and a present current into the rechargeable power source. Alternatively, charging is suspended during the recharge session, and voltage measurements are taken, after which time charging is resumed, without patient input or suspending the recharge session.