摘要:
With the present invention, two wafers for a solar cell only whose light receiving surfaces are selectively etched can be simultaneously obtained by overlapping the two wafers and performing a single-sided etching or an asymmetric etching thereon. The present invention provides a method of etching a wafer comprising: performing a single-sided etching or an asymmetric etching on the wafer, wherein the performing the single-sided etching or the asymmetric etching comprises: overlapping two wafers whose one sides face each other; and etching the overlapped two wafers, and a solar cell including the etched wafers.
摘要:
An epitaxial layer may be formed on a substrate having a first region and a second region. A photo diode may be formed on a first portion of the epitaxial layer in the first region of the substrate. At least one transfer transistor may be formed on the epitaxial layer adjacent to the photo diode. A plurality of transistors may be formed on a second portion of the epitaxial layer in the second region. An insulation layer may be formed to cover the photo diode, the at least one transfer transistor and the plurality of transistors. A plurality of connections may be formed through the insulation layer to be electrically connected with the at least one transfer transistor and the plurality of transistors in the second region. A shielding member may be formed to expose the photo diode. The epitaxial layer and/or the substrate may be treated with a hydrogen plasma before forming the shielding member to remove dangling bonds of silicon-oxygen and/or silicon-silicon.
摘要:
The present invention provides an intelligent MEA for fuel cell including means for easily measuring the voltage of unit cells and means for preventing heat transfer from an outside low-temperature heat source to a catalyst layer of the MEA during operation of the fuel cell stack at low temperature.For this, the present invention provides n intelligent membrane electrode assembly (MEA) for fuel cell, including: an MEA in which a catalyst layer is coated on both sides of an ion exchange membrane, and an ion exchange membrane support film is attached on both sides of an edge portion of the ion exchange membrane; a flexible printed circuit board (PCB) mounted on one surface of the ion exchange membrane support film along the outer line of the catalyst layer of the MEA; a PCB terminal formed on one end of the flexible PCB; and a connector connected to the PCB terminal to communicate with an external controller, wherein the flexible PCB includes an electrical heating element, an electrical heating element temperature sensor for measuring the temperature of the electrical heating element, an MEA temperature sensor for measuring the temperature of the MEA, an electrical contact for measuring the resistance of unit cells, and an electrical contact for measuring the voltage of the unit cells, formed in a predetermined arrangement to communicate with the PCB terminal.