摘要:
An epitaxial layer may be formed on a substrate having a first region and a second region. A photo diode may be formed on a first portion of the epitaxial layer in the first region of the substrate. At least one transfer transistor may be formed on the epitaxial layer adjacent to the photo diode. A plurality of transistors may be formed on a second portion of the epitaxial layer in the second region. An insulation layer may be formed to cover the photo diode, the at least one transfer transistor and the plurality of transistors. A plurality of connections may be formed through the insulation layer to be electrically connected with the at least one transfer transistor and the plurality of transistors in the second region. A shielding member may be formed to expose the photo diode. The epitaxial layer and/or the substrate may be treated with a hydrogen plasma before forming the shielding member to remove dangling bonds of silicon-oxygen and/or silicon-silicon.
摘要:
A transistor having an electrode layer that can reduce or prevent a coupling effect, a fabricating method thereof, and an image sensor having the same are provided. The transistor includes a semiconductor substrate and a well of a first conductivity type formed on the semiconductor substrate. A heavily-doped first impurity region of a first conductivity type surrounds an active region defined in the well. Heavily-doped second and third impurity regions of a second conductivity type are spaced apart from each other in the active region an define a channel region interposed therebetween. A gate is formed over the channel region to cross the active region. The gate overlaps at least a portion of the first impurity region and receives a first voltage. An electrode layer is formed between the semiconductor substrate and the gate, such that the electrode layer overlaps a portion of the first impurity region contacting the channel region and receives a second voltage. An insulation layer is formed between the semiconductor substrate and the electrode layer, the semiconductor substrate and the gate, and the electrode layer and the gate. The insulation layer surrounds the electrode layer.
摘要:
A transistor having an electrode layer that can reduce or prevent a coupling effect, a fabricating method thereof, and an image sensor having the same are provided. The transistor includes a semiconductor substrate and a well of a first conductivity type formed on the semiconductor substrate. A heavily-doped first impurity region of a first conductivity type surrounds an active region defined in the well. Heavily-doped second and third impurity regions of a second conductivity type are spaced apart from each other in the active region an define a channel region interposed therebetween. A gate is formed over the channel region to cross the active region. The gate overlaps at least a portion of the first impurity region and receives a first voltage. An electrode layer is formed between the semiconductor substrate and the gate, such that the electrode layer overlaps a portion of the first impurity region contacting the channel region and receives a second voltage. An insulation layer is formed between the semiconductor substrate and the electrode layer, the semiconductor substrate and the gate, and the electrode layer and the gate. The insulation layer surrounds the electrode layer.
摘要:
Image sensors are provided. The image sensors may include first and second stacked impurity regions having different conductivity types. The image sensors may also include a floating diffusion region in the first impurity region. The image sensors may further include a transfer gate electrode surrounding the floating diffusion region in the first impurity region. Also, the transfer gate electrode and the floating diffusion region may overlap the second impurity region.
摘要:
In a method of doping impurities, an amorphous layer is formed on a substrate. Impurities are implanted through a top surface of the amorphous layer to form a first doping region at an upper portion of the substrate. The first doping region and the amorphous layer are transformed into a second doping region and a recrystallized layer, respectively, by a laser annealing process. The recrystallized layer is removed.
摘要:
Image sensors are provided. The image sensors may include first and second stacked impurity regions having different conductivity types. The image sensors may also include a floating diffusion region in the first impurity region. The image sensors may further include a transfer gate electrode surrounding the floating diffusion region in the first impurity region. Also, the transfer gate electrode and the floating diffusion region may overlap the second impurity region.
摘要:
An image sensor and a method for fabricating the image sensor are provided. The method for fabricating the image sensor includes forming a first insulating layer on a semiconductor epitaxial layer having multiple pixel regions; patterning a portion of the semiconductor epitaxial layer and the first insulating layer in a boundary region between the pixel regions to form a trench; forming a buried insulating layer on the first insulating layer, filling the trench, the buried insulating layer having a planar top surface; forming a second insulating layer on the buried insulating layer; forming a first mask pattern on the second insulating layer, the first mask pattern defining an opening overlapping the trench; and performing an ion implantation process using the first mask pattern as an ion implantation mask to form a first type potential barrier region in a bottom of the trench.
摘要:
An image sensor with sufficient photoelectric conversion capacity and enhanced reliability and a method of fabricating the same, in which the image sensor includes a bare substrate; an epitaxial layer disposed on the bare substrate and including a first impurity distribution region of a first conductivity type, which is formed on the bare substrate, and a second impurity distribution region of a second conductivity type, which is formed on the first impurity distribution region; and a charge collection well formed within the epitaxial layer and at least partially doped with third impurities of the second conductivity type, wherein the charge collection well occupies the first impurity distribution region and the second impurity distribution region and represents the second conductivity type as a whole.
摘要:
An image sensor and a method for fabricating the image sensor are provided. The method for fabricating the image sensor includes forming a first insulating layer on a semiconductor epitaxial layer having multiple pixel regions; patterning a portion of the semiconductor epitaxial layer and the first insulating layer in a boundary region between the pixel regions to form a trench; forming a buried insulating layer on the first insulating layer, filling the trench, the buried insulating layer having a planar top surface; forming a second insulating layer on the buried insulating layer; forming a first mask pattern on the second insulating layer, the first mask pattern defining an opening overlapping the trench; and performing an ion implantation process using the first mask pattern as an ion implantation mask to form a first type potential barrier region in a bottom of the trench.
摘要:
An image sensor includes a semiconductor substrate including an active pixel region and an optical black region, a wiring pattern on the active pixel region and on the optical black region, and a light shielding pattern on the wiring pattern in the optical black region, the light shielding pattern including an opening therein. A dummy pattern is in the optical black region and is spaced apart from the light shielding pattern. The dummy pattern blocks light incident through the openings of the light shielding patter. An inter-metal dielectric layer fills spaces between the patterns, and a passivation layer is on the inter-metal dielectric layer. The dummy pattern includes an opening therein, and a hydrogen diffusion path is provided from the passivation layer, through the opening in the light shielding pattern and the opening in the dummy pattern, to the semiconductor substrate. The dummy pattern may be on the same level as the wiring pattern.