摘要:
A liquid crystal display capable of operating with little parasitic capacitance variation is presented. The display includes a substrate, a gate line disposed on the substrate, a storage electrode line disposed on the substrate and having a main portion that extends parallel with the gate line, a data line crossing the gate line and the storage electrode line and including a source electrode, a drain electrode facing the source electrode; and a pixel electrode connected to the drain electrode, wherein the storage electrode line includes a plurality of storage electrodes extending from the main portion in the same direction as the data line, and the storage electrodes overlap different regions of the data line.
摘要:
A display substrate includes a data line disposed on a base substrate, a first pixel electrode disposed at a first side of the data line, a second pixel electrode disposed at a second side of the data line and a storage electrode overlapping with the data line. The storage electrode overlaps with the first pixel electrode by a first overlapping width, and overlaps with the second pixel electrode by a second overlapping width larger than the first overlapping width.
摘要:
A method for manufacturing a thin film transistor array panel is disclosed. A gate wiring pattern is formed on an insulating substrate. A gate insulating layer is formed on the gate wiring pattern. A semiconductor pattern is formed on the gate insulating layer. A transparent conductive layer is formed on the gate insulating layer. The transparent conductive layer is patterned to form a pixel electrode. An opening is formed at a circumference of the pixel electrode. The opening minimizes misalignment during the manufacturing process and prevents shorts between a data line and the pixel electrode.
摘要:
In an array substrate and a display apparatus having the array substrate, a pixel part includes gate lines, data lines and pixels electrically connected to the gate and data lines. A gate driving circuit is electrically connected to a first end of the gate lines and applies a gate signal to the gate lines. A first inspecting circuit is electrically connected to odd-numbered gate lines of the gate lines and inspects odd-numbered pixels connected to the odd-numbered gate lines. A second inspecting circuit is electrically connected to even-numbered gate lines of the gate lines and inspects even-numbered pixels connected to the even-numbered gate lines. Thus, electrical defects between the pixels may be easily detected, thereby improving the inspectability for the defects of the array substrate.
摘要:
A liquid crystal display having electrodes on a single substrate. A transparent planar electrode elongated in the transverse direction is formed on the inner surface of a substrate, and an insulating film is deposited thereon. A plurality of linear electrodes, which are elongated in the longitudinal direction and either transparent or opaque, are formed on the insulating film. Potential difference between the planar and the linear electrodes generated by applying voltages to the electrodes yields an electric field. The electric field is symmetrical with respect to the longitudinal central line of the linear electrodes, and has parabolic or semi-elliptical lines of force having a center on a boundary line between the planar and the linear electrodes. The line of force on the planar and the linear electrodes and on the boundary line between the planar and the linear electrodes has the vertical and the horizontal components, and the liquid crystal molecules are re-arranged to have a twist angle and a tilt angle. The polarization of the incident light varies due to the rearrangement of the liquid crystal molecules.
摘要:
A thin film transistor array panel comprises a plurality of gate lines formed on an insulating substrate; a repair line formed on the insulating substrate; a gate insulating layer formed on the gate lines and the repair line; a plurality of data lines formed on the gate insulating layer; an electricity dissipation line formed on the gate insulating layer crossing the gate lines and the repair line; and a first diode connecting the repair line and the electricity dissipation line. When static electricity is introduced through the repair lines, the static electricity is transferred to the electricity dissipation line and is dispersed or exhausted before it reaches to the data lines. As a result, the TFTs and wires in the display area are prevented from being destroyed by the static electricity.
摘要:
A liquid crystal display having electrodes on a single substrate. A transparent planar electrode elongated in the transverse direction is formed on the inner surface of a substrate, and an insulating film is deposited thereon. A plurality of linear electrodes, which are elongated in the longitudinal direction and either transparent or opaque, are formed on the insulating film. Potential difference between the planar and the linear electrodes generated by applying voltages to the electrodes yields an electric field. The electric field is symmetrical with respect to the longitudinal central line of the linear electrodes, and has parabolic or semi-elliptical lines of force having a center on a boundary line between the planar and the linear electrodes. The line of force on the planar and the linear electrodes and on the boundary line between the planar and the linear electrodes has the vertical and the horizontal components, and the liquid crystal molecules are re-arranged to have a twist angle and a tilt angle. The polarization of the incident light varies due to the rearrangement of the liquid crystal molecules.
摘要:
A display panel is provided, which includes: a plurality of gate lines; a plurality of data lines intersecting the gate lines; a plurality of switching elements connected to the gate lines and the data lines; a plurality of pixel electrodes connected to the switching elements; a plurality of driving signal lines transmitting a plurality of driving signals; a plurality of test pads for test signals disposed near an edge of the panel; and a gate driver generating and applying gate signals to the gate lines responsive to the driving signals transmitted from the driving signal lines.
摘要:
A display substrate includes source lines, gate lines, an output pad part, a fan-out part and a first voltage line part. The source lines are in a display area. The gate lines cross the source lines. The output pad part is in a peripheral area surrounding the display area and is electrically connected to output terminals of a driving chip. The fan-out part is electrically connected between the output pad part and the source lines. The first voltage line part is inclined with respect to a central line of a chip area in which the driving chip is mounted toward opposite sides of the chip area to cross the fan-out part. Therefore, the line reactance of the fan-out part is decreased and the uniformity of the line resistance of the fan-out part is increased to improve image display quality.
摘要:
A gate wire including a gate line extending in the horizontal direction, and a gate electrode is formed on an insulating substrate. A gate insulating layer is formed on the gate wire and covers the same. A semiconductor pattern is formed on the gate insulating layer 30, and formed on the semiconductor pattern are a data wire having a date line in the vertical direction, a source electrode, a drain electrode separated from the source electrode opposite the source electrode with respect to the gate electrode, and an align pattern located on both sides of the data line. A passivation layer is formed on the data wire and the align pattern, and has contact holes exposing the drain electrode and an opening exposing the substrate between the data line and the align pattern. Here, the align pattern adjacent to the data line is exposed through the opening, and the semiconductor pattern and the gate insulating layer are under-cut. A pixel electrode connected to the drain electrode through the contact hole is formed on the passivation layer. Here, the opening is located between the data line and the pixel electrode. In this structure, misalignment occurring in the manufacturing process of a thin film transistor panel for a liquid crystal display is minimized, and stitch defects are prevented by uniformity forming a coupling capacitance between the data line and the pixel electrode. Shorts between the data line and the pixel electrode are prevented by forming the opening between the data line and the pixel electrode.