摘要:
Provided are a method and a wireless device for transmitting an uplink. The wireless device transmits a random access preamble to a first serving cell through a first wireless resource, and transmits an uplink channel to a second serving cell through a second wireless resource. The first serving cell belongs to a first timing advance (TA) group, and the second serving cell belongs to a second TA group that differs from the first TA group. All or a portion of the first wireless resource and the second wireless resource overlap.
摘要:
A method and apparatus for mitigating interference in a wireless communication system supporting heterogeneous networks are disclosed. When the wireless communication system includes a first network and a second network, the method includes generating information indicating whether each of uplink component carriers is used for transmission of control information in the first network, and transmitting the information to a UE. A component carrier used for transmission of control information in the first network is different from a component carrier used for transmission of control information in the second network.
摘要:
Provided is an operating method in multiple cells, and a wireless device using same. The wireless device monitors a control channel in each subframe of a normal cell. The wireless device receives information regarding the transmission power of a physical signal of an expanded cell having an unmonitored control channel, and receives the physical signal in the expanded cell.
摘要:
Provided are a method and an apparatus for applying control information in a wireless communication system. The method includes the steps of: receiving a setting for ACK/NACK(acknowledgement/not-acknowledgement) repetition from a base station; receiving control information to be applied at a particular time point from the base station; transmitting ACK/NACK for the control information; and performing an operation according to the control information at the particular time point when the transmitted ACK/NACK is ACK, wherein the operation at the particular time point is applied to a subframe which is determined according to the setting for ACK/NACK repetition.
摘要:
Disclosed are a method and a device for transmitting an ACK/NACK in a time division duplex (TDD)-based wireless communication system. A terminal receives an uplink grant that includes uplink resource allocation and piggyback information, and determines an ACK/NACK response for at least one downlink transmission block according to said piggyback information. The terminal multiplexes the ACK/NACK response with an uplink transport block and transmits the multiplexed ACK/NACK response.
摘要:
Disclosed are a multi-carrier supporting method and apparatus. A terminal receives information on at least one allocated component carrier from among a plurality of component carriers from a base station, and receives activation control information on an active component carrier that is activated from among the at least one allocated component carrier via a downlink control channel. The terminal transmits a reception acknowledgement for the activation control information via an uplink control channel.
摘要:
The present invention is directed to a wireless communication system. More specifically, the present invention is directed to a method and an apparatus of controlling uplink transmission at a user equipment in a wireless communication system, wherein the user equipment is connected to multiple component carriers, which includes receiving configuration information for transmitting an uplink signal from a base station; and identifying a time for transmitting the uplink signal to the base station on a corresponding uplink component carrier in use of the configuration information, wherein if the corresponding uplink component carrier is in a non-available state at the time for transmitting the uplink signal, the uplink signal is not transmitted.
摘要:
A method and apparatus for transmitting reception acknowledgment for hybrid automatic repeat request (HARQ) in a wireless communication system are provided. A user equipment receives a plurality of downlink resource allocations on a plurality of downlink control channels by using a plurality of downlink carriers, and receives a plurality of downlink transfer blocks on a plurality of downlink shared channels indicated by the plurality of downlink resource allocations. The user equipment determines a plurality of acknowledgment (ACK)/negative acknowledgment (NACK) resource indices based on a plurality of resource indices obtained from downlink resources which use the plurality of downlink control channels. The user equipment transmits ACK/NACK for the plurality of downlink transfer blocks by using ACK/NACK resources indicated by the plurality of ACK/NACK resource indices.
摘要:
The present invention is directed to a wireless communication system. More specifically, the present invention is directed to a method and an apparatus of controlling uplink transmission at a user equipment in a wireless communication system, wherein the user equipment is connected to multiple component carriers, which includes receiving configuration information for transmitting an uplink signal from a base station; and identifying a time for transmitting the uplink signal to the base station on a corresponding uplink component carrier in use of the configuration information, wherein if the corresponding uplink component carrier is in a non-available state at the time for transmitting the uplink signal, the uplink signal is not transmitted.
摘要:
This document is related to a wireless communication system, and more particularly to a method and an apparatus for transmitting encoded signals with frequency hopping environment. A method of transmitting signals by a user equipment (UE) comprises: encoding an input signal having a length of (A) bits by using (A) basis sequences having a length of 20 bits to output an encoded signal having a length of 20 bits, wherein (A) is a natural number less than 14; mapping the encoded signal having the length of 20 bits to two different resource regions, wherein the first 10 bits of the encoded signal are mapped to a first resource region, and the second 10 bits of the encoded signal are mapped to a second resource region; and transmitting the resource-mapped signals to a Node B, wherein the encoded signal or the (A) basis sequences are cyclic shifted with a value of (x) before mapping the encoded signal to the two different resource regions, wherein (x) is a natural number less than 20.