Abstract:
A method for inspection includes capturing an optical image of one or more features on a surface of a sample and irradiating an area of the sample containing at least one of the features with an X-ray beam. An intensity of X-ray fluorescence emitted from the sample in response to the irradiating X-ray beam is measured. The optical image is processed so as to extract geometrical parameters of the at least one of the features and to compute a correction factor responsively to the geometrical parameters. The correction factor is applied to the measured intensity in order to derive a property of the at least one of the features.
Abstract:
A method for X-ray Fluorescence (XRF) analysis includes directing an X-ray beam onto a sample and measuring an XRF signal excited from the sample, in a reference measurement in which the sample includes one or more first layers formed on a substrate, and in a target measurement after one or more second layers are formed on the substrate in addition to the first layers, so as to produce a reference XRF spectrum and a target XRF spectrum, respectively. A contribution of the first layers to the target XRF spectrum is reduced using the reference XRF spectrum. A parameter of at least one of the second layers is estimated using the target XRF spectrum in which the contribution of the first layers has been reduced.
Abstract:
A method for X-ray measurement includes, in a calibration phase, scanning a first X-ray beam, having a first beam profile, across a feature of interest on a calibration sample and measuring first X-ray fluorescence (XRF) emitted from the feature and from background areas of the calibration sample surrounding the feature. Responsively to the first XRF and the first beam profile, a relative emission factor is computed. In a test phase, a second X-ray beam, having a second beam profile, different from the first beam profile, is directed to impinge on the feature of interest on a test sample and second XRF emitted from the test sample is measured in response to the second X-ray beam. A property of the feature of interest on the test sample is computed by applying the relative emission factor together with the second beam profile to the measured second XRF.
Abstract:
A method for X-ray measurement includes, in a calibration phase, scanning a first X-ray beam, having a first beam profile, across a feature of interest on a calibration sample and measuring first X-ray fluorescence (XRF) emitted from the feature and from background areas of the calibration sample surrounding the feature. Responsively to the first XRF and the first beam profile, a relative emission factor is computed. In a test phase, a second X-ray beam, having a second beam profile, different from the first beam profile, is directed to impinge on the feature of interest on a test sample and second XRF emitted from the test sample is measured in response to the second X-ray beam. A property of the feature of interest on the test sample is computed by applying the relative emission factor together with the second beam profile to the measured second XRF.
Abstract:
A method for inspection includes irradiating, with a focused beam, a feature formed on a semiconductor wafer, the feature including a volume containing a first material and a cap made of a second material, different from the first material, that is formed over the volume. One or more detectors positioned at different angles relative to the feature are used to detect X-ray fluorescent photons that are emitted by the first material in response to the irradiating beam and pass through the cap before striking the detectors. Signals output by the one or more detectors at the different angles in response to the detected photons are processed in order to assess a quality of the cap.
Abstract:
A method for inspection includes irradiating, with a focused beam, a feature formed on a semiconductor wafer, the feature including a volume containing a first material and a cap made of a second material, different from the first material, that is formed over the volume. One or more detectors positioned at different angles relative to the feature are used to detect X-ray fluorescent photons that are emitted by the first material in response to the irradiating beam and pass through the cap before striking the detectors. Signals output by the one or more detectors at the different angles in response to the detected photons are processed in order to assess a quality of the cap.
Abstract:
A method for X-ray Fluorescence (XRF) analysis includes directing an X-ray beam onto a sample and measuring an XRF signal excited from the sample, in a reference measurement in which the sample includes one or more first layers formed on a substrate, and in a target measurement after one or more second layers are formed on the substrate in addition to the first layers, so as to produce a reference XRF spectrum and a target XRF spectrum, respectively. A contribution of the first layers to the target XRF spectrum is reduced using the reference XRF spectrum. A parameter of at least one of the second layers is estimated using the target XRF spectrum in which the contribution of the first layers has been reduced.
Abstract:
A method for inspection includes capturing an optical image of one or more features on a surface of a sample and irradiating an area of the sample containing at least one of the features with an X-ray beam. An intensity of X-ray fluorescence emitted from the sample in response to the irradiating X-ray beam is measured. The optical image is processed so as to extract geometrical parameters of the at least one of the features and to compute a correction factor responsively to the geometrical parameters. The correction factor is applied to the measured intensity in order to derive a property of the at least one of the features.