摘要:
In some implementations, a processor may include a machine check architecture having a plurality of error reporting registers able to receive data for machine check errors. A summary register may include a plurality of settable locations that each represents at least one of the error reporting registers. One or more of the settable locations in the summary register may be set to indicate whether one or more of the error reporting registers maintain data for a machine check error. Accordingly, when a machine check error occurs, the summary register may be accessed to identify if any error reporting registers in a processor's view contain valid error data, rather than having to read each of the error reporting registers in the processor's view.
摘要:
In some implementations, a processor may include a machine check architecture having a plurality of error reporting registers able to receive data for machine check errors. A summary register may include a plurality of settable locations that each represents at least one of the error reporting registers. One or more of the settable locations in the summary register may be set to indicate whether one or more of the error reporting registers maintain data for a machine check error. Accordingly, when a machine check error occurs, the summary register may be accessed to identify if any error reporting registers in a processor's view contain valid error data, rather than having to read each of the error reporting registers in the processor's view.
摘要:
Methods and architectures for performing hardware error handling using coordinated operating system (OS) and firmware services. In one aspect, a firmware interface is provided to enable an OS to access firmware error-handling services. Such services enable the OS to access error data concerning platform hardware errors that may not be directed accessed via a platform processor or through other conventional approaches. Techniques are also disclosed for intercepting the processing of hardware error events and directing control to firmware error-handling services prior to attempting to service the error using OS-based services. The firmware services may correct hardware errors and/or log error data that may be later accessed by the OS or provided to a remote management server using an out-of-band communication channel. In accordance with another aspect, the firmware intercept and services may be performed in a manner that is transparent to the OS.
摘要:
Hot plug modules comprising processors, memory, and/or I/O hubs may be added to and removed from a running computing device without rebooting the running computing device. The hot plug modules and computing device comprise hot plug interfaces that support hot plug addition and hot plug removal of the hot plug modules.
摘要:
In some embodiments, an apparatus includes a processor, an expander memory bridge location, a memory coupled to the expander memory bridge location, and a bus controller including intercept logic to intercept and block communication from the processor to the expander memory bridge location and to emulate an expander memory bridge. In some embodiments, a method includes intercepting and blocking a status request to a device, regardless of whether the device is installed, and responding to the status request.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
One aspect of the invention relates to a method for supporting hibernation despite the presence of hot-plugged nodes and non-deterministic boot operations. The method comprises invoking a management interrupt in response to a Hibernate request. The management interrupt is used to obtain and store platform configuration information into a non-volatile storage location. The platform configuration information includes data to indicate whether a next boot sequence for a platform occurs as a deterministic boot sequence or a non-deterministic boot sequence as well as a boot node identifier and a listing of an order in which processors of the platform are initialized.