摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
Hot plug modules comprising processors, memory, and/or I/O hubs may be added to and removed from a running computing device without rebooting the running computing device. The hot plug modules and computing device comprise hot plug interfaces that support hot plug addition and hot plug removal of the hot plug modules.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
One aspect of the invention relates to a method for supporting hibernation despite the presence of hot-plugged nodes and non-deterministic boot operations. The method comprises invoking a management interrupt in response to a Hibernate request. The management interrupt is used to obtain and store platform configuration information into a non-volatile storage location. The platform configuration information includes data to indicate whether a next boot sequence for a platform occurs as a deterministic boot sequence or a non-deterministic boot sequence as well as a boot node identifier and a listing of an order in which processors of the platform are initialized.
摘要:
One aspect of the invention relates to creation of a container object being part of software that is stored in platform readable medium and executed by a processor within a platform. The container comprises (i) a hardware identification object to identify to an operating system of the platform that a type of device represented by the container object is a node and (ii) a plurality of component objects to identify constituent components of the node. Another aspect of the invention is the distribution of BIOS to handle initiation of components of a substrate in response to hot-plug addition of that substrate.
摘要:
In some embodiments, an apparatus includes a processor, an expander memory bridge location, a memory coupled to the expander memory bridge location, and a bus controller including intercept logic to intercept and block communication from the processor to the expander memory bridge location and to emulate an expander memory bridge. In some embodiments, a method includes intercepting and blocking a status request to a device, regardless of whether the device is installed, and responding to the status request.
摘要:
In some embodiments, an apparatus includes logical interrupt identification number creation logic to receive physical processor identification numbers and create logical processor identification numbers through using the physical processor identification numbers. Each of the logical processor identification numbers corresponds to one of the physical processor identification numbers, and the logical processor identification numbers each include a processor cluster identification number and an intra-cluster identification number. The processor cluster identification numbers are each formed to include a group of bits from the corresponding physical processor identification number shifted in position, and the intra-cluster identification numbers are each formed in response to values of others of the bits of the corresponding physical processor identification number. Other embodiments are described.
摘要:
In some embodiments, an apparatus includes processor selection logic to receive logical destination identification numbers that are associated with interrupts each having a processor cluster identification number to identify a cluster of processors to which the interrupts are directed. The logical destination identification numbers are each to identify which processors within the identified cluster of processors are available to receive the corresponding one of interrupts. The processor selection logic is to select one of the available processors to receive the interrupt, and the selected one of the available processors is identified through a relative position of a corresponding bit in the logical destination identification numbers. Other embodiments are described.