摘要:
A medical device constructed according to the invention includes electrodes (12a, 12b), a measuring unit (24) for measuring a patient-dependent electrical parameter (e.g., impedance) of the patient, an electrotherapy generator (26) for delivering electrotherapy to the patient, and a processing unit (20) for controlling the delivery of electrotherapy to the patient. Electrotherapy is preferably delivered to the patient based on the measured patient-dependent electrical parameter and a predetermined response of a reference patient to a nominal electrotherapy. The actual electrotherapy delivered to the patient is controlled so that the electrotherapy has a probability of success for the patient that is equivalent to the probability of success of the nominal electrotherapy for the reference patient. A consistent shock efficacy across different patients is achieved.
摘要:
An energy adjusting circuit for use with a defibrillator. The energy adjusting circuit reduces the defibrillation pulse energy that would otherwise be applied to the patient by the defibrillator. The energy adjusting circuit can be part of the defibrillator itself, or part of an adapter coupled to the output ports of a conventional defibrillator. In an adapter designed for pediatric defibrillation, the adapter may include paddles configured for use on babies and small children. The energy adjusting circuit may be formed entirely from passive components and may include a divider circuit with two resistors. The resistance of the two resistors is selected so as to absorb a predetermined percentage of the defibrillation pulse energy that would otherwise be applied to the patient. An isolation circuit may be further included to assist with the measurement of ECG signals through the electrodes. The components of the energy adjusting circuit can be selected so as to produce a defibrillation waveform that has a desired pulse width and tilt, both of which are approximately fixed over an expected range of patient impedances. The defibrillator may be configured to recognize the presence of the energy adjusting circuit, and to indicate to the user that the energy selection ranges have been adjusted accordingly.
摘要:
Systems, devices, software and methods are provided, for making a decision as to whether to administer an electric shock to a patient. The decision can be made differently, depending on whether the patient has already been shocked or not.
摘要:
Embodiments of the present concept are directed to CPR chest compression machines that include a sensor to detect a parameter about a patient, such as an indication of patient recovery, and include a processor that determines whether to cease series of successive compressions on the patient in response to the detected parameter.
摘要:
Medical devices, software and methods are provided, for making a decision as to whether to administer electric shock therapy to a patient. The decision is made with respect to ECG data that is discounted at least partially, and sometimes even completely, if it occurs during a transition between chest compression group and a pause for ventilation.
摘要:
A cardiac arrhythmia may be induced by delivering a sequence of pulses to a patient via one or more extravascular electrodes. In one example, one or more pacing pulses may be delivered to a patient via an extravascular electrode and a shock pulse may be delivered to the patient the extravascular electrode. In some examples, the pacing pulses and the shock pulse may be generated with energy from a common energy storage module and without interim charging of the module. For example, the pacing and shock pulses may be generated as the energy storage module dissipates. In another example, a cardiac arrhythmia may be induced in a patient by delivering a burst of pulses to a patient via an extravascular electrode. In some cases, the burst of pulses may be generated with energy from a common energy storage module and without interim charging of the energy storage module.
摘要:
A cardiac arrhythmia may be induced by delivering a sequence of pulses to a patient via one or more extravascular electrodes. In one example, one or more pacing pulses may be delivered to a patient via an extravascular electrode and a shock pulse may be delivered to the patient the extravascular electrode. In some examples, the pacing pulses and the shock pulse may be generated with energy from a common energy storage module and without interim charging of the module. For example, the pacing and shock pulses may be generated as the energy storage module dissipates. In another example, a cardiac arrhythmia may be induced in a patient by delivering a burst of pulses to a patient via an extravascular electrode. In some cases, the burst of pulses may be generated with energy from a common energy storage module and without interim charging of the energy storage module.
摘要:
Techniques are provided for alerting a person to check a medical device while conserving battery power. The medical device initiates a status alert if a readiness condition of the medical device is no longer being met. The status alert includes notification periods during which an audible sound is emitted alternating with off periods during which substantially no audible sound is emitted. The audible sounds may include certain tones or at least one spoken word. At least one of the duration of successive notification periods or the duration of successive off periods may be varied. In this manner, the medical device may provide audible sound at different times during the day in an attempt to get the attention of a person. In addition, the medical device may sense an activity to determine when to provide the audible sound.
摘要:
Techniques are provided for alerting a person to check a medical device while conserving battery power. The medical device initiates a status alert if a readiness condition of the medical device is no longer being met. The status alert includes notification periods during which an audible sound is emitted alternating with off periods during which substantially no audible sound is emitted. The audible sounds may include certain tones or at least one spoken word. At least one of the duration of successive notification periods or the duration of successive off periods may be varied. In this manner, the medical device may provide audible sound at different times during the day in an attempt to get the attention of a person. In addition, the medical device may sense an activity to determine when to provide the audible sound.
摘要:
Devices, methods, and software implementing those methods for providing communicating external chest compression (ECC) devices and defibrillation (DF) devices, where the ECC and DF devices can be physically separate from each other. Both ECC and DF devices are able to operate autonomously, yet able to communicate with and cooperate with another device when present. Some ECC and DF devices are adapted to be physically and/or electrically coupled to each other. One ECC device includes a backboard, a chest compression member, a communication module, controller, and at least one sensor, electrode lead or electrode. One DF device includes a defibrillator module, a controller, and a communication module that can communicate with the ECC communication module. The communicating ECC and DF devices may deliver ECC, pacing, defibrillation, ventilation, and cooling therapies, and may deliver instructions to human assistants, in a coordinated and cooperative fashion.