Abstract:
A device and method for matching the rates of speed at which an electric motor that is drivingly connected to a worm gear raises and lowers a window in an automobile power window assembly. By axially displacing the motor's armature, and/or by varying the thread and tooth profiles of the worm and the gear, the amount of torque produced by the motor and transmitted through the worm gear can be altered. In order to compensate for the effect of gravity on the motor load and on the window's speed of ascent and descent, more torque is provided when the window is being raised and less torque is provided when the window is being lowered.
Abstract:
The present invention generally relates to devices and methods for converting mechanical energy into electrical energy to power electronic devices. Some embodiments include one or more piezoelectric fibers disposed on a flexible central body capable of elastically deforming under an applied force. The piezoelectric fibers can be in electrical communication with one or more electrodes adapted to harvest electrical energy from the piezoelectric fiber and provide such energy to an external circuit. Some embodiments can also include one or more diodes interposed between the electrode and the external circuit.
Abstract:
A control system for a brushless DC motor, preferably used in a power steering system in a vehicle. Presently delivered torque is computed without measuring currents in the motor. A demanded torque signal is received, and a torque error signal is produced. The torque error signal is modified by an inertial torque component, if the motor is accelerating. In response to the modified error signal, the control system first attempts to increase motor torque by increasing motor voltage, if that is possible, without increasing magnetic field which is parallel with the magnetic field of the rotor. If that is not possible, then motor voltage is held fixed, and the magnetic field just mentioned is increased.
Abstract:
A device and method for matching the rates of speed at which an electric motor that is drivingly connected to a worm gear raises and lowers a window in an automobile power window assembly. By axially displacing the motor's armature, and/or by varying the thread and tooth profiles of the worm and the gear, the amount of torque produced by the motor and transmitted through the worm gear can be altered. In order to compensate for the effect of gravity on the motor load and on the window's speed of ascent and descent, more torque is provided when the window is being raised and less torque is provided when the window is being lowered.
Abstract:
A powered apparatus includes a driven component that is movable along a path and a drive motor that moves the driven component along the path. A motor speed detector monitors an instantaneous speed of the drive motor at each position along the path. An electronic control unit operates the drive motor and includes load profile data representing a number of motor loads associated with respective positions of the driven component along the path. A calculating component determines a calculated final rest position of the driven component by adding a current position of the driven component along the path and an adjustment coefficient representing an additional distance of travel along the path based on the instantaneous speed of the drive motor and a respective motor load associated with the additional distance of travel. A non-volatile memory component stores the calculated final rest position of the driven component.
Abstract:
The present invention generally relates to devices and methods for converting mechanical energy into electrical energy to power electronic devices. Some embodiments include one or more piezoelectric fibers disposed on a flexible central body capable of elastically deforming under an applied force. The piezoelectric fibers can be in electrical communication with one or more electrodes adapted to harvest electrical energy from the piezoelectric fiber and provide such energy to an external circuit. Some embodiments can also include one or more diodes interposed between the electrode and the external circuit.
Abstract:
A powered vehicle door system and method in which a motor-driven door opening and closing mechanism and a motor-driven latching mechanism cooperate to enable the door to open from a latched, fully-closed position with improved noise control and improved smoothness of operation. The door can be a tailgate or a swinging or sliding door, and the opening and closing mechanism is operative to place the door in an over-closed position, thus reducing or eliminating the inherent tension placed upon the latch from the compressive force of the seal interposed between the door and the door frame. Optionally, the door latching mechanism assists the door opening and closing mechanism in placing the door in the over-closed position.
Abstract:
A powered vehicle door system and method in which a motor-driven door opening and closing mechanism and a motor-driven latching mechanism cooperate to enable the door to open from a latched, fully-closed position with improved noise control and improved smoothness of operation. The door can be a tailgate or a swinging or sliding door, and the opening and closing mechanism is operative to place the door in an over-closed position, thus reducing or eliminating the inherent tension placed upon the latch from the compressive force of the seal interposed between the door and the door frame. Optionally, the door latching mechanism assists the door opening and closing mechanism in placing the door in the over-closed position.
Abstract:
A fault-handling system for a 2-phase motor. When an electric motor is used for power assist in a steering system in a vehicle, malfunctions can cause loss of assist, and detectable vibration. The invention utilizes a 2-phase motor in such an application, and implements alternate modes of operation when certain malfunctions occur, thereby maintaining the assist function in situations wherein the function would otherwise be lost or reduced.
Abstract:
A powered apparatus includes a driven component that is movable along a path and a drive motor that moves the driven component along the path. A motor speed detector monitors an instantaneous speed of the drive motor at each position along the path. An electronic control unit operates the drive motor and includes load profile data representing a number of motor loads associated with respective positions of the driven component along the path. A calculating component determines a calculated final rest position of the driven component by adding a current position of the driven component along the path and an adjustment coefficient representing an additional distance of travel along the path based on the instantaneous speed of the drive motor and a respective motor load associated with the additional distance of travel. A non-volatile memory component stores the calculated final rest position of the driven component.