摘要:
A DSV control bit determining/inserting unit 11 inserts DSV control bits for execution of DSV control into an input data string and outputs the data string including the DSV control bits to a modulation unit 12. The modulation unit 12 converts the data string with a basic data length of 2 bits into variable length code with a basic code length of 3 bits in accordance with a conversion table and outputs the code resulting from the conversion to a NRZI encoding unit 13. The conversion table used by the modulation unit 12 includes substitution codes for limiting the number of consecutive appearances of a minimum run to a predetermined value and substitution codes for keeping a run length limit. In addition, the conversion table enforces a conversion rule, according to which the remainder of division of the “1” count of an element in a data string by 2 having a value of 0 or 1 shall always be equal to the remainder of division of the “1” count of an element in the code resulting from conversion of the data string by 2.
摘要:
How to record and play back data at a high line density. A DSV control bit determining/inserting unit 11 inserts DSV control bits for execution of DSV control into an input data string and outputs the data string including the DSV control bits to a modulation unit 12. The modulation unit 12 converts the data string with a basic data length of 2 bits into variable length code with a basic code length of 3 bits in accordance with a conversion table and outputs the code resulting from the conversion to a NRZI encoding unit 13. The conversion table used by the modulation unit 12 includes substitution codes for limiting the number of consecutive appearances of a minimum run to a predetermined value and substitution codes for keeping a run length limit. In addition, the conversion table enforces a conversion rule, according to which the remainder of division of the “1” count of an element in a data string by 2 having a value of 0 or 1 shall always be equal to the remainder of division of the “1” count of an element in the code resulting from conversion of the data string by 2.
摘要:
A DSV control bit determining/inserting unit inserts DSV control bits into an input data string and outputs the string including the DSV control bits to a modulation unit which converts the string with basic data length of 2 bits into variable length code with basic code length of 3 bits in accordance with a conversion table and outputs the code resulting from the conversion to a NRZI encoding unit. The conversion table includes substitution codes for limiting the number of consecutive appearances of a minimum run and substitution codes for keeping a run length limit. The conversion table enforces a conversion rule: the remainder of division of the “1” count of an element in a data string by 2 having a value of 0 or 1 equals the remainder of division of the “1” count of an element in the code resulting from conversion of the data string by 2.
摘要:
How to record and play back data at a high line density. A DSV control bit determining/inserting unit 11 inserts DSV control bits for execution of DSV control into an input data string and outputs the data string including the DSV control bits to a modulation unit 12. The modulation unit 12 converts the data string with a basic data length of 2 bits into variable length code with a basic code length of 3 bits in accordance with a conversion table and outputs the code resulting from the conversion to a NRZI encoding unit 13. The conversion table used by the modulation unit 12 includes substitution codes for limiting the number of consecutive appearances of a minimum run to a predetermined value and substitution codes for keeping a run length limit. In addition, the conversion table enforces a conversion rule, according to which the remainder of division of the “1” count of an element in a data string by 2 having a value of 0 or 1 shall always be equal to the remainder of division of the “1” count of an element in the code resulting from conversion of the data string by 2.
摘要:
A device is disclosed for encoding a stream of databits of a binary source signal (S) into a stream of databits of a binary channel signal (C) satisfying a (d,k) constraint, wherein the bitstream of the source signal is divided into n-bit source words (x1, x2), which device comprises converting means (CM) adapted to convert said source words into corresponding m-bit channel words (Y1, Y2, Y2). The converting means (CM) are further adapted to convert n-bit source words into corresponding m-bit channel words, such that the conversion for each n-bit source word is parity preserving (table I). The relations hold that m>n≧1, p≧1, and that p can vary. Preferably, m=n+1. Further, a sync word generator (9) is available for generating a q-bit sync word also satisfying said (d,k) constraint, the said sync word starting with a ‘0’ bit and ending with a ‘0’ bit, the device further comprising merging means (19) for merging said sync word in said stream of databits of the binary channel signal, and that q is an integer value larger than k. (FIG. 1) Further, a decoding device is disclosed for decoding the channel signal obtained by means of the encoding device.
摘要:
A DSV control bit determining/inserting unit inserts DSV control bits for execution of DSV control into an input data string and outputs the data string including the DSV control bits to a modulation unit. This modulation unit converts the data string with a basic data length of 2 bits into variable length code with a basic code length of 3 bits in accordance with a conversion table and outputs the code resulting from the conversion to a NRZI encoding unit. The conversion table used by the modulation unit includes substitution codes for limiting the number of consecutive appearances of a minimum run to a predetermined value and substitution codes for keeping a run length limit. In addition, the conversion table enforces a conversion rule, according to which the remaineder of division of the “1” count of an element in a data string by 2 having a value of 0 or 1 shall always be equal to the remainder of division of the “1” count of an element in the code resulting from conversion of the data string by 2.
摘要:
An optical record carrier comprises a recording layer for recording information in a pattern of optically detectable marks in substantially parallel tracks. The tracks comprise alternating first and second servo tracks. The servo tracks have a track modulation different from the information pattern and indicative of position information. The position information in the first servo tracks, is encoded into m first words of channel bits and the position information in the second servo track, is encoded into n second words of channel bits where m and n are integers, and substantially all first and second words are different.
摘要:
A sampled synchronous transmission signal Vt is represented by a series of samples J at equidistant sampling instants. A computing circuit 5 computes the positions R of the sampling instants relative to the rising edges of a virtual reference clock Cref which is phase-locked to the channel clock. For each sampling instant the position R is determined on the basis of the position R of a preceding sampling instant and a measure Q of the difference in time between the sampling interval T and the period L of the virtual reference clock Cref. From the values of the successive samples J an interpolation circuit 2 derives the positions N of the detection-level crossings by the transmission signal Vt, which crossings represent a fixed phase position of the channel clock. After each detection-level crossing the measure Q of the time difference is corrected by circuit 3 and 4, depending on the difference between the positions N and R. A data recovery circuit arrangement recovers the data depending on the values determined for the positions R.
摘要:
The invention proposes an apparatus for encoding an information signal. The information signal can be a (d,k) sequence. The apparatus encodes the (d,k) sequence into a (d+n,k+n) sequence by changing the number of zeroes between each time two subsequent ones in the sequence by n. The information signal can also be a RLL sequence of the type (d,k). The apparatus encodes the signal into a RLL sequence of the type (d+n,k+n) by changing the runlengths by n bitcells each.
摘要:
A device for encoding a stream of databits of a binary source signal (S) into a stream of databits of a binary channel signal (C), wherein the bitstream of the source signal is divided into n-bit source words (x.sub.1, x.sub.2), which device includes a converting circuit (CM) adapted to convert the source words into corresponding m-bit channel words (y.sub.1, y.sub.2, y.sub.3). The converting circuit (CM) is further adapted to convert n-bit source words into corresponding m-bit words, such that the conversion for each n-bit source word is parity preserving (table I). The relations hold that m>n.gtoreq.1, p.gtoreq.1, and that p can vary. Preferably, m=n+1. Further, a decoding device is disclosed for decoding the channel signal obtained by means of the encoding device.