摘要:
Methods and a structure. The method includes applying a solution including two or more immiscible polymers to a substructure including features having at least one sidewall and a bottom surface. The immiscible polymers include a first polymer and a second polymer. The at least one sidewall includes a material. A selective chemical affinity of the first polymer for the material is greater than a selective chemical affinity of the second polymer for the material. The first polymer is segregated from the second polymer. The first polymer selectively migrates to the at least one sidewall, resulting in the first polymer being disposed between the at least one sidewall and the second polymer. One or more immiscible polymers is selectively removed. At least one immiscible polymer remains, resulting in forming structures including the substructure and the immiscible polymer remaining. Two additional methods and a structure are also included.
摘要:
Disclosed herein is a method of controlling the orientation of microphase-separated domains in a block copolymer film, comprising forming an orientation control layer comprising an epoxy-containing cycloaliphatic acrylic polymer on a surface of a substrate, irradiating and/or heating the substrate to crosslink the orientation control layer, and forming a block copolymer assembly layer comprising block copolymers which form microphase-separated domains, on a surface of the orientation control layer opposite the substrate. The orientation control layer can be selectively cross-linked to expose regions of the substrate, or the orientation control layer can be patterned without removing the layer, to provide selective patterning on the orientation control layer. In further embodiments, bilayer and trilayer imaging schemes are disclosed.
摘要:
A Method. The method includes forming a substructure, on a substrate, including a feature having a sidewall of a first material and a bottom surface of a second material. Applying a solution including two immiscible polymers and third material to the substructure. The immiscible polymers include a first and second polymer. A selective chemical affinity of the first polymer for the material is greater than a selective chemical affinity of the second polymer for the material. The first polymer is segregated from the second polymer. The first polymer selectively migrates to the at least one sidewall, resulting in the first polymer being disposed between the at least one sidewall and the second polymer. The first polymer is selectively removed. The second polymer remains, resulting in forming structures including the substructure, the third material, and the second polymer. The substructure has a pattern. The pattern is transferred to the substrate.
摘要:
Disclosed herein is a method of controlling the orientation of microphase-separated domains in a block copolymer film, comprising forming an orientation control layer comprising an epoxy-containing cycloaliphatic acrylic polymer on a surface of a substrate, irradiating and/or heating the substrate to crosslink the orientation control layer, and forming a block copolymer assembly layer comprising block copolymers which form microphase-separated domains, on a surface of the orientation control layer opposite the substrate. The orientation control layer can be selectively cross-linked to expose regions of the substrate, or the orientation control layer can be patterned without removing the layer, to provide selective patterning on the orientation control layer. In further embodiments, bilayer and trilayer imaging schemes are disclosed.
摘要:
Disclosed herein is a method of controlling the orientation of microphase-separated domains in a block copolymer film, comprising forming an orientation control layer comprising an epoxy-containing cycloaliphatic acrylic polymer on a surface of a substrate, irradiating and/or heating the substrate to crosslink the orientation control layer, and forming a block copolymer assembly layer comprising block copolymers which form microphase-separated domains, on a surface of the orientation control layer opposite the substrate. The orientation control layer can be selectively cross-linked to expose regions of the substrate, or the orientation control layer can be patterned without removing the layer, to provide selective patterning on the orientation control layer. In further embodiments, bilayer and trilayer imaging schemes are disclosed.
摘要:
A Method. The method includes forming a substructure, on a substrate, including a feature having a sidewall of a first material and a bottom surface of a second material. Applying a solution including two immiscible polymers and third material to the substructure. The immiscible polymers include a first and second polymer. A selective chemical affinity of the first polymer for the material is greater than a selective chemical affinity of the second polymer for the material. The first polymer is segregated from the second polymer. The first polymer selectively migrates to the at least one sidewall, resulting in the first polymer being disposed between the at least one sidewall and the second polymer. The first polymer is selectively removed. The second polymer remains, resulting in forming structures including the substructure, the third material, and the second polymer. The substructure has a pattern. The pattern is transferred to the substrate.
摘要:
Methods and a structure. The method includes applying a solution including two or more immiscible polymers to a substructure including features having at least one sidewall and a bottom surface. The immiscible polymers include a first polymer and a second polymer. The at least one sidewall includes a material. A selective chemical affinity of the first polymer for the material is greater than a selective chemical affinity of the second polymer for the material. The first polymer is segregated from the second polymer. The first polymer selectively migrates to the at least one sidewall, resulting in the first polymer being disposed between the at least one sidewall and the second polymer. One or more immiscible polymers is selectively removed. At least one immiscible polymer remains, resulting in forming structures including the substructure and the immiscible polymer remaining. Two additional methods and a structure are also included.
摘要:
Methods are disclosed for forming topographical features. In one method, a pre-patterned structure is provided which comprises i) a support member having a surface and ii) an element for topographically guiding segregation of a polymer mixture including a first polymer and a second polymer, the element comprising a feature having a sidewall adjoined to the surface. The polymer mixture is disposed on the pre-patterned structure, wherein the disposed polymer mixture has contact with the sidewall and the surface. The first polymer and the second polymer are segregated in a plane parallel to the surface, thereby forming a segregated structure comprising a first polymer domain and a second polymer domain. The first polymer domain and/or the second polymer domain are lithographically patterned, thereby forming topographical features comprising at least one of i) a first feature comprising a lithographically patterned first polymer domain and ii) a second feature comprising a lithographically patterned second polymer domain.
摘要:
A composition comprises a crosslinked poly(meth)acrylate comprising two or more poly(meth)acrylate backbones covalently linked to a bridging group, the backbones comprising i) respective first repeat units, each of which comprises a first side chain ester moiety comprising a hydrophilic poly(alkylene oxide) chain segment, ii) respective second repeat units, each of which comprises a second side chain ester moiety directly linked to the bridging group through a linking group selected from the group consisting of carbamate groups, urea groups, and thiocarbamate groups, and iii) respective third repeat units, each of which comprises a hydrophobic side chain moiety not directly linked to any bridging group. Composite filtration membranes having a selective layer that comprises the composition exhibit useful anti-fouling and/or salt rejection characteristics.
摘要:
A composition comprises a crosslinked poly(meth)acrylate comprising two or more poly(meth)acrylate backbones covalently linked to a bridging group, the backbones comprising i) respective first repeat units, each of which comprises a first side chain ester moiety comprising a hydrophilic poly(alkylene oxide) chain segment, ii) respective second repeat units, each of which comprises a second side chain ester moiety directly linked to the bridging group through a linking group selected from the group consisting of carbamate groups, urea groups, and thiocarbamate groups, and iii) respective third repeat units, each of which comprises a hydrophobic side chain moiety not directly linked to any bridging group. Composite filtration membranes having a selective layer that comprises the composition exhibit useful anti-fouling and/or salt rejection characteristics.