摘要:
A method of forming a nanometer-scale prominence and depression structure on a zinc oxide thin film in a wet-etching method, and the method includes the steps of: preparing a substrate; forming a nano structure having a height and a width of a nanometer range; forming the zinc oxide thin film on the substrate on which the nano structure is formed; and wet-etching the zinc oxide thin film, in which in the wet-etching step, zinc oxide having relatively low physical compactness is preferentially etched since the zinc oxide is positioned on the nano structure, and thus the prominence and depression structure is formed around the nano structure by the etching.The method is effective in that a thin film can be uniformly formed on the prominence and depression structure, and an electrolyte or an organic material may uniformly penetrate between the prominence and depression structure.
摘要:
An apparatus and method for measurement of radiation intensity for testing reliability of a solar cell, and a method for testing the reliability of the solar cell. The apparatus includes a first solar cell receiving a predetermined intensity of radiation or more to generate electricity, a second solar cell receiving a predetermined intensity of radiation or more to generate electricity; a temperature sensor sensing a temperature of the second solar cell; a cooler cooling the first solar cell; and a controller measuring the intensity of radiation applied to the first solar cell, and controlling the cooler to prevent the temperature of the first solar cell from increasing above a predetermined temperature depending on the temperature of the second solar cell sensed by the temperature sensor.
摘要:
An apparatus and method for measurement of radiation intensity for testing reliability of a solar cell, and a method for testing the reliability of the solar cell. The apparatus includes a first solar cell receiving a predetermined intensity of radiation or more to generate electricity, a second solar cell receiving a predetermined intensity of radiation or more to generate electricity; a temperature sensor sensing a temperature of the second solar cell; a cooler cooling the first solar cell; and a controller measuring the intensity of radiation applied to the first solar cell, and controlling the cooler to prevent the temperature of the first solar cell from increasing above a predetermined temperature depending on the temperature of the second solar cell sensed by the temperature sensor.
摘要:
A method of forming a nanometer-scale prominence and depression structure on a zinc oxide thin film in a wet-etching method, and the method includes the steps of: preparing a substrate; forming a nano structure having a height and a width of a nanometer range; forming the zinc oxide thin film on the substrate on which the nano structure is formed; and wet-etching the zinc oxide thin film, in which in the wet-etching step, zinc oxide having relatively low physical compactness is preferentially etched since the zinc oxide is positioned on the nano structure, and thus the prominence and depression structure is formed around the nano structure by the etching.The method is effective in that a thin film can be uniformly formed on the prominence and depression structure, and an electrolyte or an organic material may uniformly penetrate between the prominence and depression structure.
摘要:
Disclosed is a double-structure transparent conducting film having both excellent electrical characteristics and excellent light trapping performance, and a method of manufacturing the same.The double-structure transparent conducting film, which is used as a front antireflection film, a front electrode or a rear reflective film of a solar cell, includes: a light transmitting layer; and a light trapping layer whose one side is in contact with the light transmitting layer and whose other side is provided thereon with a surface textured structure; wherein the relationship of electrical conductivity A of the light transmitting layer and electrical conductivity a of the light trapping layer is A>a, and the relationship of etchability of the light transmitting layer and etchability of the light trapping layer is B