Abstract:
A quantum cascade laser includes a substrate having a first surface, a second surface opposite the first surface, and a recess provided in the second surface; a semiconductor region provided on the first surface of the substrate; a ridge portion extending in one direction on the semiconductor region; a first electrode provided along the ridge portion; and a second electrode provided on the second surface of the substrate. Furthermore, the semiconductor region includes a first cladding layer of n-type, a core layer, and a second cladding layer of n-type stacked in that order. The recess is provided at a position corresponding to the ridge portion in the second surface of the substrate, and the second electrode is provided in the recess.
Abstract:
An integrated semiconductor optical device includes first and second semiconductor optical devices. The first semiconductor optical device includes a first core layer, a first upper cladding layer including a first ridge portion, a first buried layer surrounding the first ridge portion, and a first adjusting layer provided between the first buried layer and the first ridge portion. The second semiconductor optical device includes a second core layer, a second upper cladding layer including a second ridge portion. The first semiconductor optical device and the second semiconductor optical device are arranged next to each other in a predetermined axis direction. The first core layer is joined to the second core layer by a butt joint method at a joint boundary between the first and second semiconductor optical devices. The first adjusting layer has a refractive index lower than a refractive index of the first core layer and higher than a refractive index of the first buried layer. The first adjusting layer extends in the predetermined axis direction. The first adjusting layer has a constant width from one end facet to the joint boundary.
Abstract:
A Mach-Zehnder interferometer type optical modulator includes a first end facet and a reflecting portion opposing the first end facet; a single optical coupler including input and output ports, the optical coupler being disposed between the first end facet and the reflecting portion; first and second optical waveguides that are connected to the input ports of the optical coupler; third and fourth optical waveguides that are connected to the output ports of the optical coupler; and a phase shifting section disposed between the optical coupler and the reflecting portion. The phase shifting section includes a first optical waveguide structure constituting part of the third optical waveguide; a first upper electrode on the first optical waveguide structure; a second optical waveguide structure constituting part of the fourth optical waveguide; and a second upper electrode on the second optical waveguide structure.
Abstract:
The present invention provides a laser diode with a current blocking layer without a pn-junction. The laser diode includes a lower cladding layer, an active region and an upper cladding layer on the GaAs substrate in this order. The active region includes first and second regions. The upper cladding layer, which includes a ridge structure, locates on the first region, while, the current blocking region is on the second region of the active region so as to sandwich the ridge structure. The current blocking layer of the invention is made of one of un-doped GaInP and un-doped AlGaInP grown at a relatively low temperature and shows high resistance greater than 105 Ω·cm.
Abstract:
A Mach-Zehnder interferometer type optical modulator includes first and third optical waveguides; input and output optical couplers; and a phase shifting section disposed between the input and output optical couplers. The phase shifting section includes first and second optical waveguide structures each including an n-type semiconductor section, a core layer and a cladding layer. The cladding layer of the first optical waveguide structure includes a first section disposed on the core layer, and second and third sections disposed on the first section. The second and third sections are juxtaposed to each other in a direction that intersects a waveguiding direction. The first and second sections are composed of a p-type semiconductor, and the third section is composed of an undoped semiconductor.
Abstract:
An integrated semiconductor optical device includes first and second semiconductor optical devices. The first semiconductor optical device includes a first core layer, a first upper cladding layer including a first ridge portion, a first buried layer surrounding the first ridge portion, and a first adjusting layer provided between the first buried layer and the first ridge portion. The second semiconductor optical device includes a second core layer, a second upper cladding layer including a second ridge portion. The first semiconductor optical device and the second semiconductor optical device are arranged next to each other in a predetermined axis direction. The first core layer is joined to the second core layer by a butt joint method at a joint boundary between the first and second semiconductor optical devices. The first adjusting layer has a refractive index lower than a refractive index of the first core layer and higher than a refractive index of the first buried layer. The first adjusting layer extends in the predetermined axis direction. The first adjusting layer has a constant width from one end facet to the joint boundary.
Abstract:
A semiconductor optical device includes a first optical waveguide including first, second, and third sections; a second optical waveguide including fourth, fifth, and sixth sections; an input optical coupler; and an output optical coupler. The first and second optical waveguides and the input and output optical couplers each include a first cladding layer composed of an n-type semiconductor and a core layer. The second and fifth sections each include an intermediate semiconductor layer on the core layer, and a second cladding layer composed of an n-type semiconductor. The first, third, fourth, and sixth sections and the input and output optical couplers each further include a third cladding layer on the core layer. At least one of the third cladding layers includes a first cladding section on the core layer and a second cladding section on the first cladding section. The second cladding section is composed of a semi-insulating semiconductor.