摘要:
When a main body of a sensor chip (1) is in a grounded state, a shield layer (71) constituting a shield electrode formed on a circuit layer (72) is grounded through a resistor (46).
摘要:
When a main body of a sensor chip (1) is in a grounded state, a shield layer (71) constituting a shield electrode formed on a circuit layer (72) is grounded through a resistor (46).
摘要:
A semiconductor device has a plurality of first opening portions formed in an interlayer insulating film. The surface is covered with a metal film with a surface having concavities and convexities which scatter reflected light. Size of the first opening portion is of the same level as a contact hole of a component and cannot be recognized by an image recognition apparatus. The metal film can be recognized by the image recognition apparatus. By forming a TiN film serving as a reflection prevention film on an end of the metal film, portions that can easily scatter light and a portion that cannot easily reflect light are adjacent in an alignment marker. A passivation film is formed on the interlayer insulating film and the TiN film. Recessed portions disposed in the metal film are exposed to a second opening portion formed in the passivation film and the TiN film.
摘要:
In aspects of the invention, an auxiliary memory circuit includes a shift register wherein a plurality of flip-flops are cascade-connected and a plurality of inversion circuits that invert and output outputs of each D flip-flop. A main memory circuit includes a switch, which acts in accordance with a signal from the auxiliary memory circuit, and an EPROM connected in series to the switch and driven by a writing voltage. A variable resistance circuit includes a switch, which acts in accordance with a signal from the auxiliary memory circuit, and a resistor connected in series to the switch. With aspects of the invention, it is possible for terminals of the writing voltage and a writing voltage to be commonized. Also, it is possible to provide a low-cost semiconductor physical quantity sensor device that can carry out electrical trimming with the voltage when writing into the EPROM kept constant.
摘要:
It is desired to further reduce output errors which are caused by temperature characteristics. A sensor device is provided which includes a sense circuit which outputs a sense signal according to a magnitude of a detected physical quantity, an amplifier circuit which amplifies the sense signal, and a switching unit which switches at least one of a sensitivity of the sense circuit and an offset of the amplifier circuit discontinuously according to whether a temperature measurement value exceeds a threshold value.
摘要:
If the bridge circuit fails due to damage of the diaphragm, the damage is detected at an early stage. A pressure sensor comprises: a substrate provided with a diaphragm; a bridge circuit having four resistor devices provided at the diaphragm, the bridge circuit being applied with high-voltage-side voltage and low-voltage-side voltage, and having two output terminals; a detecting unit for detecting a first output at a first output terminal and a second output at a second output terminal, each output terminal being of the bridge circuit; and a failure detecting unit for detecting failure of the bridge circuit based on a detection result at the detecting unit.
摘要:
To detect deterioration of a correction memory, provided is a semiconductor device including the correction memory that stores therein correction data for correcting a correction target; a correcting section that corrects a detection value of a sensor element, using correction data read from the correction memory; a diagnosing section that diagnoses the correction memory, using the correction data read from the correction memory; and a control section that controls reading conditions used when reading the correction data from the correction memory, wherein the control section causes a first reading condition, used when reading the correction data for correcting a correction target, to differ from a second reading condition, which is used when reading the correction data for the diagnosis.
摘要:
To detect deterioration of a correction memory, provided is a semiconductor device including the correction memory that stores therein correction data for correcting a correction target; a correcting section that corrects a detection value of a sensor element, using correction data read from the correction memory; a diagnosing section that diagnoses the correction memory, using the correction data read from the correction memory; and a control section that controls reading conditions used when reading the correction data from the correction memory, wherein the control section causes a first reading condition, used when reading the correction data for correcting a correction target, to differ from a second reading condition, which is used when reading the correction data for the diagnosis.
摘要:
A semiconductor physical quantity sensor device having a power source terminal for receiving a power source potential, a ground terminal for receiving a ground potential, and an output terminal. The semiconductor physical quantity sensor includes a sensor configured to generate a signal, an amplifier configured to amplify the signal, and to output the amplified signal through the output terminal, a first resistor electrically connected between the power source terminal and the amplifier, a second resistor electrically connected between the output terminal and the ground terminal, and a filter electrically connected between the power source terminal and the sensor, and including a third resistor and a capacitor.
摘要:
A protection circuit includes a first PMOS and a first PDMOS receiving input of voltage of a voltage dividing point of voltage input from an external power supply terminal, and a second PMOS and a second PDMOS receiving input of drain output voltage of the first PDMOS. The first PMOS is connected on the external power supply terminal side of the first PDMOS, and the second PMOS is connected on the external power supply terminal side of the second PDMOS. During overvoltage application, the voltage of the voltage dividing point is clamped to the breakdown voltage of a Zener diode, the second PDMOS turns OFF, and supply to an integrated circuit protected from overvoltage is cut off. When the voltage source is connected in reverse, parasitic diodes of the first and second PMOSs are reverse-biased and the flow of current in a path through the parasitic diodes is inhibited.